Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220784906> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4220784906 endingPage "987" @default.
- W4220784906 startingPage "980" @default.
- W4220784906 abstract "A large amount of unstructured data has been accumulated in the daily dispatching work of power systems as the form of text. In order to use these texts effectively, entities in the text need to be recognized, such as names of station and equipment. Because of the complex composition of the power dispatching text, this paper first summarizes the characteristics of the power dispatching text. A character-level entity recognition model based on multiple features is proposed, which is suitable for power text. Our model combines pretrained character embedding, left-neighbour entropy, and part-of-speech to represent the domain characteristics of power dispatching text. And we exploit the fusion method for multiple features inputting. The double-layer BiLSTM proposed in this paper is used to predict character sequence labels, and finally CRF is used to optimize the label predicted. This paper chooses a power outage maintenance application to recognize name entities. The results of experiments show that our model can increase the overall F1 value by 2.26% compared with the traditional models, and the recognition of lines and stations has increased by 3.88% and 3.99%. The recognition accuracy of each tag has been enhanced." @default.
- W4220784906 created "2022-04-03" @default.
- W4220784906 creator A5015102287 @default.
- W4220784906 creator A5024002121 @default.
- W4220784906 creator A5025192718 @default.
- W4220784906 creator A5033716144 @default.
- W4220784906 creator A5050295643 @default.
- W4220784906 date "2022-08-01" @default.
- W4220784906 modified "2023-10-18" @default.
- W4220784906 title "Chinese power dispatching text entity recognition based on a double-layer BiLSTM and multi-feature fusion" @default.
- W4220784906 cites W2079735306 @default.
- W4220784906 cites W2296283641 @default.
- W4220784906 cites W2993383518 @default.
- W4220784906 cites W3040737736 @default.
- W4220784906 cites W3079406089 @default.
- W4220784906 cites W3086711114 @default.
- W4220784906 doi "https://doi.org/10.1016/j.egyr.2022.02.272" @default.
- W4220784906 hasPublicationYear "2022" @default.
- W4220784906 type Work @default.
- W4220784906 citedByCount "8" @default.
- W4220784906 countsByYear W42207849062022 @default.
- W4220784906 countsByYear W42207849062023 @default.
- W4220784906 crossrefType "journal-article" @default.
- W4220784906 hasAuthorship W4220784906A5015102287 @default.
- W4220784906 hasAuthorship W4220784906A5024002121 @default.
- W4220784906 hasAuthorship W4220784906A5025192718 @default.
- W4220784906 hasAuthorship W4220784906A5033716144 @default.
- W4220784906 hasAuthorship W4220784906A5050295643 @default.
- W4220784906 hasBestOaLocation W42207849061 @default.
- W4220784906 hasConcept C121332964 @default.
- W4220784906 hasConcept C124101348 @default.
- W4220784906 hasConcept C138885662 @default.
- W4220784906 hasConcept C153180895 @default.
- W4220784906 hasConcept C154945302 @default.
- W4220784906 hasConcept C163258240 @default.
- W4220784906 hasConcept C165696696 @default.
- W4220784906 hasConcept C178790620 @default.
- W4220784906 hasConcept C185592680 @default.
- W4220784906 hasConcept C204321447 @default.
- W4220784906 hasConcept C2524010 @default.
- W4220784906 hasConcept C2776401178 @default.
- W4220784906 hasConcept C2779227376 @default.
- W4220784906 hasConcept C2780861071 @default.
- W4220784906 hasConcept C28490314 @default.
- W4220784906 hasConcept C33923547 @default.
- W4220784906 hasConcept C38652104 @default.
- W4220784906 hasConcept C41008148 @default.
- W4220784906 hasConcept C41608201 @default.
- W4220784906 hasConcept C41895202 @default.
- W4220784906 hasConcept C62520636 @default.
- W4220784906 hasConceptScore W4220784906C121332964 @default.
- W4220784906 hasConceptScore W4220784906C124101348 @default.
- W4220784906 hasConceptScore W4220784906C138885662 @default.
- W4220784906 hasConceptScore W4220784906C153180895 @default.
- W4220784906 hasConceptScore W4220784906C154945302 @default.
- W4220784906 hasConceptScore W4220784906C163258240 @default.
- W4220784906 hasConceptScore W4220784906C165696696 @default.
- W4220784906 hasConceptScore W4220784906C178790620 @default.
- W4220784906 hasConceptScore W4220784906C185592680 @default.
- W4220784906 hasConceptScore W4220784906C204321447 @default.
- W4220784906 hasConceptScore W4220784906C2524010 @default.
- W4220784906 hasConceptScore W4220784906C2776401178 @default.
- W4220784906 hasConceptScore W4220784906C2779227376 @default.
- W4220784906 hasConceptScore W4220784906C2780861071 @default.
- W4220784906 hasConceptScore W4220784906C28490314 @default.
- W4220784906 hasConceptScore W4220784906C33923547 @default.
- W4220784906 hasConceptScore W4220784906C38652104 @default.
- W4220784906 hasConceptScore W4220784906C41008148 @default.
- W4220784906 hasConceptScore W4220784906C41608201 @default.
- W4220784906 hasConceptScore W4220784906C41895202 @default.
- W4220784906 hasConceptScore W4220784906C62520636 @default.
- W4220784906 hasLocation W42207849061 @default.
- W4220784906 hasLocation W42207849062 @default.
- W4220784906 hasOpenAccess W4220784906 @default.
- W4220784906 hasPrimaryLocation W42207849061 @default.
- W4220784906 hasRelatedWork W1607315280 @default.
- W4220784906 hasRelatedWork W1981825067 @default.
- W4220784906 hasRelatedWork W2050958351 @default.
- W4220784906 hasRelatedWork W2331043530 @default.
- W4220784906 hasRelatedWork W2374725260 @default.
- W4220784906 hasRelatedWork W2382607599 @default.
- W4220784906 hasRelatedWork W2393933887 @default.
- W4220784906 hasRelatedWork W2546942002 @default.
- W4220784906 hasRelatedWork W2970216048 @default.
- W4220784906 hasRelatedWork W2997512100 @default.
- W4220784906 hasVolume "8" @default.
- W4220784906 isParatext "false" @default.
- W4220784906 isRetracted "false" @default.
- W4220784906 workType "article" @default.