Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220785610> ?p ?o ?g. }
- W4220785610 endingPage "112967" @default.
- W4220785610 startingPage "112967" @default.
- W4220785610 abstract "Timely monitoring of above-ground biomass (AGB) is essential for indicating the crop growth status and predicting grain yield and carbon dynamics. Non-destructive remote sensing techniques with a large spatial coverage have become a promising method for crop biomass monitoring. However, most existing crop biomass models have only been tested at a single growth stage or only at a small number of growth stages at a single location. This has limited the ability of these AGB models to be transferred spatially, to other fields or regions, to predict AGB at any growth stage during the season, or to be potentially used with data from other sensing systems. Here, a new crop biomass algorithm (CBA-Wheat) was developed to estimate AGB over the entire growing season. It uses information on the crop growth stage, based on phenological scale observations (Zadoks scale or ZS), the day of the year or thermal indices (growing degree days), to correct AGB estimations from remotely sensed vegetation indices. The model transferability was evaluated across multiple regional test sites and different data sources (UAV and hand-held spectroscopic data). Results showed that the coefficient values [slope (k) and intercept (b)] of ordinary least squares regression (OLSR) of AGB with vegetation indices had a strong relationship with ZS. These k and b relationships were used to correct the OLSR model parameters based on the observed phenological stage (ZS value). The two-band enhanced vegetation index (EVI2) was the best vegetation index for predicting AGB with the new CBA-WheatZS model, with R2 and RMSE values of 0.83 and 2.07 t/ha for an experimental trial site, 0.78 and 2.05 t/ha for multiple independent regional test sites, and 0.69 and 1.87 t/ha when transferred to EVI2 derived from UAV. Model performance was lower with the day of the year and thermal index corrections; however, the use of relative growing degree-days (RGS; CBA-WheatRGS), instead of ZS information, to adjust the model parameters showed a high consistency with the CBA-WheatZS model, and a good potential for estimation of AGB at regional scales without the need for local phenological observations. The CBA-WheatRGS had validated R2 and RMSE values of 0.82 and 2.01 t/ha for the experimental trial site, 0.76 and 2.39 t/ha for multiple independent regional test sites, and 0.66 and 2.14 t/ha for UAV hyperspectral imagery. These results demonstrated a good potential to estimate biomass from remotely sensed imagery at varying spatio-temporal scales in winter wheat." @default.
- W4220785610 created "2022-04-03" @default.
- W4220785610 creator A5007427445 @default.
- W4220785610 creator A5011848072 @default.
- W4220785610 creator A5017381482 @default.
- W4220785610 creator A5017491136 @default.
- W4220785610 creator A5020713851 @default.
- W4220785610 creator A5025603787 @default.
- W4220785610 creator A5026358256 @default.
- W4220785610 creator A5032584289 @default.
- W4220785610 creator A5039880991 @default.
- W4220785610 creator A5043204543 @default.
- W4220785610 creator A5043973769 @default.
- W4220785610 creator A5045905103 @default.
- W4220785610 creator A5055838753 @default.
- W4220785610 creator A5069841884 @default.
- W4220785610 creator A5070651286 @default.
- W4220785610 date "2022-05-01" @default.
- W4220785610 modified "2023-10-12" @default.
- W4220785610 title "Comparison and transferability of thermal, temporal and phenological-based in-season predictions of above-ground biomass in wheat crops from proximal crop reflectance data" @default.
- W4220785610 cites W1125121475 @default.
- W4220785610 cites W1966194886 @default.
- W4220785610 cites W1970004911 @default.
- W4220785610 cites W1982378832 @default.
- W4220785610 cites W1986072339 @default.
- W4220785610 cites W1986148386 @default.
- W4220785610 cites W1989667116 @default.
- W4220785610 cites W1994975670 @default.
- W4220785610 cites W2001467506 @default.
- W4220785610 cites W2003299437 @default.
- W4220785610 cites W2006920087 @default.
- W4220785610 cites W2012086085 @default.
- W4220785610 cites W2025384267 @default.
- W4220785610 cites W2030688147 @default.
- W4220785610 cites W2032690583 @default.
- W4220785610 cites W2052700773 @default.
- W4220785610 cites W2091493105 @default.
- W4220785610 cites W2094677081 @default.
- W4220785610 cites W2118476033 @default.
- W4220785610 cites W2120397678 @default.
- W4220785610 cites W2121025745 @default.
- W4220785610 cites W2167869331 @default.
- W4220785610 cites W2396251851 @default.
- W4220785610 cites W2585124289 @default.
- W4220785610 cites W2586216468 @default.
- W4220785610 cites W2621041193 @default.
- W4220785610 cites W2665869568 @default.
- W4220785610 cites W2736116482 @default.
- W4220785610 cites W2745102831 @default.
- W4220785610 cites W2790682944 @default.
- W4220785610 cites W2791720519 @default.
- W4220785610 cites W2793197903 @default.
- W4220785610 cites W2808198652 @default.
- W4220785610 cites W2886822071 @default.
- W4220785610 cites W2896982871 @default.
- W4220785610 cites W2901633508 @default.
- W4220785610 cites W2918084323 @default.
- W4220785610 cites W2920653747 @default.
- W4220785610 cites W2937578908 @default.
- W4220785610 cites W2953807054 @default.
- W4220785610 cites W2964052062 @default.
- W4220785610 cites W2981110544 @default.
- W4220785610 cites W2997133053 @default.
- W4220785610 cites W3022008304 @default.
- W4220785610 cites W3024674663 @default.
- W4220785610 cites W3025204457 @default.
- W4220785610 cites W3033521935 @default.
- W4220785610 cites W3094057288 @default.
- W4220785610 cites W3157850614 @default.
- W4220785610 doi "https://doi.org/10.1016/j.rse.2022.112967" @default.
- W4220785610 hasPublicationYear "2022" @default.
- W4220785610 type Work @default.
- W4220785610 citedByCount "28" @default.
- W4220785610 countsByYear W42207856102022 @default.
- W4220785610 countsByYear W42207856102023 @default.
- W4220785610 crossrefType "journal-article" @default.
- W4220785610 hasAuthorship W4220785610A5007427445 @default.
- W4220785610 hasAuthorship W4220785610A5011848072 @default.
- W4220785610 hasAuthorship W4220785610A5017381482 @default.
- W4220785610 hasAuthorship W4220785610A5017491136 @default.
- W4220785610 hasAuthorship W4220785610A5020713851 @default.
- W4220785610 hasAuthorship W4220785610A5025603787 @default.
- W4220785610 hasAuthorship W4220785610A5026358256 @default.
- W4220785610 hasAuthorship W4220785610A5032584289 @default.
- W4220785610 hasAuthorship W4220785610A5039880991 @default.
- W4220785610 hasAuthorship W4220785610A5043204543 @default.
- W4220785610 hasAuthorship W4220785610A5043973769 @default.
- W4220785610 hasAuthorship W4220785610A5045905103 @default.
- W4220785610 hasAuthorship W4220785610A5055838753 @default.
- W4220785610 hasAuthorship W4220785610A5069841884 @default.
- W4220785610 hasAuthorship W4220785610A5070651286 @default.
- W4220785610 hasConcept C100970517 @default.
- W4220785610 hasConcept C105795698 @default.
- W4220785610 hasConcept C10863394 @default.
- W4220785610 hasConcept C115540264 @default.
- W4220785610 hasConcept C127313418 @default.
- W4220785610 hasConcept C128990827 @default.
- W4220785610 hasConcept C137580998 @default.