Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220785730> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4220785730 endingPage "103256" @default.
- W4220785730 startingPage "103256" @default.
- W4220785730 abstract "For low failure probability prediction, subset simulation can reduce the number of simulations significantly compared to the traditional MCS method for a target prediction error limit. To further reduce the computational effort for cases where the performance function evaluation is tedious and time-consuming, the performance function is approximated by a sequentially updated (instead of a global) Kriging model. For this purpose, an active learning technique with a new learning and stopping criterion is employed to efficiently select points to train the computationally cheaper Kriging model at each simulation level, which is used to estimate the intermediate threshold and generate a new simulation sample. The updated Kriging model at the final subset simulation level is used to compute the conditional failure probability. The failure probability is estimated based on an initial simulation sample size N, and an updated N is computed and employed to obtain the final failure probability within a desired bound on the variability. The efficiency (in terms of the number of expensive evaluations using the actual performance function) and prediction error (represented by the mean square error (MSE)) of the proposed method are benchmarked using several examples. The method is shown to be more efficient (using lesser expensive evaluations) with smaller MSE for problems having low failure probabilities compared with selected existing methods." @default.
- W4220785730 created "2022-04-03" @default.
- W4220785730 creator A5028433626 @default.
- W4220785730 creator A5051234901 @default.
- W4220785730 date "2022-04-01" @default.
- W4220785730 modified "2023-10-18" @default.
- W4220785730 title "Efficient subset simulation with active learning Kriging model for low failure probability prediction" @default.
- W4220785730 cites W1987168058 @default.
- W4220785730 cites W1993423758 @default.
- W4220785730 cites W1996226468 @default.
- W4220785730 cites W1999091229 @default.
- W4220785730 cites W2007535697 @default.
- W4220785730 cites W2008034786 @default.
- W4220785730 cites W2015731569 @default.
- W4220785730 cites W2031103608 @default.
- W4220785730 cites W2031295804 @default.
- W4220785730 cites W2035006468 @default.
- W4220785730 cites W2048470906 @default.
- W4220785730 cites W2056760934 @default.
- W4220785730 cites W2058542661 @default.
- W4220785730 cites W2096285034 @default.
- W4220785730 cites W2236331705 @default.
- W4220785730 cites W2604982021 @default.
- W4220785730 cites W2612783399 @default.
- W4220785730 cites W2730189265 @default.
- W4220785730 cites W2790910477 @default.
- W4220785730 cites W2896416110 @default.
- W4220785730 cites W2915935549 @default.
- W4220785730 cites W2954747721 @default.
- W4220785730 doi "https://doi.org/10.1016/j.probengmech.2022.103256" @default.
- W4220785730 hasPublicationYear "2022" @default.
- W4220785730 type Work @default.
- W4220785730 citedByCount "7" @default.
- W4220785730 countsByYear W42207857302023 @default.
- W4220785730 crossrefType "journal-article" @default.
- W4220785730 hasAuthorship W4220785730A5028433626 @default.
- W4220785730 hasAuthorship W4220785730A5051234901 @default.
- W4220785730 hasConcept C105795698 @default.
- W4220785730 hasConcept C11413529 @default.
- W4220785730 hasConcept C119857082 @default.
- W4220785730 hasConcept C122383733 @default.
- W4220785730 hasConcept C126255220 @default.
- W4220785730 hasConcept C129848803 @default.
- W4220785730 hasConcept C139945424 @default.
- W4220785730 hasConcept C14036430 @default.
- W4220785730 hasConcept C33923547 @default.
- W4220785730 hasConcept C41008148 @default.
- W4220785730 hasConcept C44492722 @default.
- W4220785730 hasConcept C78458016 @default.
- W4220785730 hasConcept C81692654 @default.
- W4220785730 hasConcept C86803240 @default.
- W4220785730 hasConceptScore W4220785730C105795698 @default.
- W4220785730 hasConceptScore W4220785730C11413529 @default.
- W4220785730 hasConceptScore W4220785730C119857082 @default.
- W4220785730 hasConceptScore W4220785730C122383733 @default.
- W4220785730 hasConceptScore W4220785730C126255220 @default.
- W4220785730 hasConceptScore W4220785730C129848803 @default.
- W4220785730 hasConceptScore W4220785730C139945424 @default.
- W4220785730 hasConceptScore W4220785730C14036430 @default.
- W4220785730 hasConceptScore W4220785730C33923547 @default.
- W4220785730 hasConceptScore W4220785730C41008148 @default.
- W4220785730 hasConceptScore W4220785730C44492722 @default.
- W4220785730 hasConceptScore W4220785730C78458016 @default.
- W4220785730 hasConceptScore W4220785730C81692654 @default.
- W4220785730 hasConceptScore W4220785730C86803240 @default.
- W4220785730 hasFunder F4320320698 @default.
- W4220785730 hasLocation W42207857301 @default.
- W4220785730 hasOpenAccess W4220785730 @default.
- W4220785730 hasPrimaryLocation W42207857301 @default.
- W4220785730 hasRelatedWork W1972153640 @default.
- W4220785730 hasRelatedWork W2057722517 @default.
- W4220785730 hasRelatedWork W2072713552 @default.
- W4220785730 hasRelatedWork W2079542341 @default.
- W4220785730 hasRelatedWork W2111101653 @default.
- W4220785730 hasRelatedWork W2562163750 @default.
- W4220785730 hasRelatedWork W2891742322 @default.
- W4220785730 hasRelatedWork W4221074196 @default.
- W4220785730 hasRelatedWork W4309764786 @default.
- W4220785730 hasRelatedWork W4378716402 @default.
- W4220785730 hasVolume "68" @default.
- W4220785730 isParatext "false" @default.
- W4220785730 isRetracted "false" @default.
- W4220785730 workType "article" @default.