Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220786039> ?p ?o ?g. }
- W4220786039 abstract "Thanks to their simplicity and interpretable structure, auto-regressive processes are widely used to model time series data. However, many real time series data sets exhibit non-linear patterns, requiring non-linear modeling. The threshold Auto-Regressive (TAR) process provides a family of non-linear auto-regressive time series models in which the process dynamics are specific step functions of a thresholding variable. While estimation and inference for low-dimensional TAR models have been investigated, high-dimensional TAR models have received less attention. In this article, we develop a new framework for estimating high-dimensional TAR models, and propose two different sparsity-inducing penalties. The first penalty corresponds to a natural extension of classical TAR model to high-dimensional settings, where the same threshold is enforced for all model parameters. Our second penalty develops a more flexible TAR model, where different thresholds are allowed for different auto-regressive coefficients. We show that both penalized estimation strategies can be utilized in a three-step procedure that consistently learns both the thresholds and the corresponding auto-regressive coefficients. However, our theoretical and empirical investigations show that the direct extension of the TAR model is not appropriate for high-dimensional settings and is better suited for moderate dimensions. In contrast, the more flexible extension of the TAR model leads to consistent estimation and superior empirical performance in high dimensions." @default.
- W4220786039 created "2022-04-03" @default.
- W4220786039 creator A5007282531 @default.
- W4220786039 creator A5039697639 @default.
- W4220786039 creator A5060606663 @default.
- W4220786039 creator A5076755336 @default.
- W4220786039 date "2022-01-01" @default.
- W4220786039 modified "2023-09-26" @default.
- W4220786039 title "Penalized estimation of threshold auto-regressive models with many components and thresholds" @default.
- W4220786039 cites W1606326889 @default.
- W4220786039 cites W1930187923 @default.
- W4220786039 cites W1972909217 @default.
- W4220786039 cites W2002849459 @default.
- W4220786039 cites W2010039423 @default.
- W4220786039 cites W2014601225 @default.
- W4220786039 cites W2028530254 @default.
- W4220786039 cites W2032291279 @default.
- W4220786039 cites W2038364295 @default.
- W4220786039 cites W2042876504 @default.
- W4220786039 cites W2056460752 @default.
- W4220786039 cites W2056636001 @default.
- W4220786039 cites W2077964948 @default.
- W4220786039 cites W2078432169 @default.
- W4220786039 cites W2078536949 @default.
- W4220786039 cites W2093291778 @default.
- W4220786039 cites W2097360283 @default.
- W4220786039 cites W2098585120 @default.
- W4220786039 cites W2100157125 @default.
- W4220786039 cites W2100967164 @default.
- W4220786039 cites W2104858016 @default.
- W4220786039 cites W2110849068 @default.
- W4220786039 cites W2116581043 @default.
- W4220786039 cites W2118673550 @default.
- W4220786039 cites W2121490355 @default.
- W4220786039 cites W2140514146 @default.
- W4220786039 cites W2140878079 @default.
- W4220786039 cites W2464564671 @default.
- W4220786039 cites W2509445763 @default.
- W4220786039 cites W2524324089 @default.
- W4220786039 cites W2950126918 @default.
- W4220786039 cites W2952309330 @default.
- W4220786039 cites W2963489521 @default.
- W4220786039 cites W2977794833 @default.
- W4220786039 cites W3005916550 @default.
- W4220786039 cites W3028794438 @default.
- W4220786039 cites W3030116412 @default.
- W4220786039 cites W3090487863 @default.
- W4220786039 cites W3105322001 @default.
- W4220786039 cites W3123861484 @default.
- W4220786039 cites W3124353475 @default.
- W4220786039 cites W3125342165 @default.
- W4220786039 cites W3193161688 @default.
- W4220786039 cites W4294541781 @default.
- W4220786039 doi "https://doi.org/10.1214/22-ejs1982" @default.
- W4220786039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37051046" @default.
- W4220786039 hasPublicationYear "2022" @default.
- W4220786039 type Work @default.
- W4220786039 citedByCount "0" @default.
- W4220786039 crossrefType "journal-article" @default.
- W4220786039 hasAuthorship W4220786039A5007282531 @default.
- W4220786039 hasAuthorship W4220786039A5039697639 @default.
- W4220786039 hasAuthorship W4220786039A5060606663 @default.
- W4220786039 hasAuthorship W4220786039A5076755336 @default.
- W4220786039 hasBestOaLocation W42207860391 @default.
- W4220786039 hasConcept C105795698 @default.
- W4220786039 hasConcept C111919701 @default.
- W4220786039 hasConcept C11413529 @default.
- W4220786039 hasConcept C115961682 @default.
- W4220786039 hasConcept C143724316 @default.
- W4220786039 hasConcept C149782125 @default.
- W4220786039 hasConcept C151406439 @default.
- W4220786039 hasConcept C151730666 @default.
- W4220786039 hasConcept C154945302 @default.
- W4220786039 hasConcept C159877910 @default.
- W4220786039 hasConcept C191178318 @default.
- W4220786039 hasConcept C192643346 @default.
- W4220786039 hasConcept C199360897 @default.
- W4220786039 hasConcept C2776214188 @default.
- W4220786039 hasConcept C2778029271 @default.
- W4220786039 hasConcept C33923547 @default.
- W4220786039 hasConcept C41008148 @default.
- W4220786039 hasConcept C86803240 @default.
- W4220786039 hasConcept C98045186 @default.
- W4220786039 hasConceptScore W4220786039C105795698 @default.
- W4220786039 hasConceptScore W4220786039C111919701 @default.
- W4220786039 hasConceptScore W4220786039C11413529 @default.
- W4220786039 hasConceptScore W4220786039C115961682 @default.
- W4220786039 hasConceptScore W4220786039C143724316 @default.
- W4220786039 hasConceptScore W4220786039C149782125 @default.
- W4220786039 hasConceptScore W4220786039C151406439 @default.
- W4220786039 hasConceptScore W4220786039C151730666 @default.
- W4220786039 hasConceptScore W4220786039C154945302 @default.
- W4220786039 hasConceptScore W4220786039C159877910 @default.
- W4220786039 hasConceptScore W4220786039C191178318 @default.
- W4220786039 hasConceptScore W4220786039C192643346 @default.
- W4220786039 hasConceptScore W4220786039C199360897 @default.
- W4220786039 hasConceptScore W4220786039C2776214188 @default.
- W4220786039 hasConceptScore W4220786039C2778029271 @default.
- W4220786039 hasConceptScore W4220786039C33923547 @default.
- W4220786039 hasConceptScore W4220786039C41008148 @default.