Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220786098> ?p ?o ?g. }
- W4220786098 abstract "The field of Additive manufacturing techniques has witnessed tremendous growth in recent years. It is considered to be one of the forerunners of the Industry 4.0 paradigm, owing to its immense potential to transform the manufacturing industry with its high efficiency compared to the conventional techniques. AM techniques are increasingly being employed for producing ‘customized’ composite materials with tailored properties suitable for user-specific applications, including safety-critical systems like satellite components. However, there exists some drawbacks in AM parts such as inconsistency in part quality, porosity control, etc. which can lead to huge financial loss and damage in industrial production, thereby hindering the expected growth in adoption of AM systems by various industries. Some of the countermeasures against these cases was development of in-line monitoring systems including advanced sensors and computing capabilities including application of Artificial Intelligence (AI)/Machine Learning (ML) which has proven to be effective in defect detection and quality assessment. However, the processes develop to be more data-intensive and dependent on computerization, which makes the system vulnerable to cyber-intrusion. The chain of attacks possible includes modification of the design file and manipulation of printing parameters such as thermal (nozzle temperature) and filament values. These may not be easily detectable without mechanical testing, effectively sabotaging the manufactured part. Another risk, which has emerged recently is the possibility of counterfeit production of high-quality AM parts. It has been shown to be possible in fibre reinforced composites using reverse engineering, by the misuse of ML techniques on imaging results to reconstruct toolpath information. In this paper, we try to focus on these shortcomings of AM techniques by discussing the severity and impacts of these risks and the current state-of-the art countermeasures including steady process monitoring and intellectual property (IP) protection. This is vital in identifying future issues to be addressed for continuous process improvement and increasing adoption of AM." @default.
- W4220786098 created "2022-04-03" @default.
- W4220786098 creator A5017736682 @default.
- W4220786098 creator A5061099968 @default.
- W4220786098 creator A5091843240 @default.
- W4220786098 date "2022-02-21" @default.
- W4220786098 modified "2023-09-24" @default.
- W4220786098 title "Unauthorized usage and cybersecurity risks in additively manufactured composites: Toolpath reconstruction using imaging and machine learning techniques" @default.
- W4220786098 cites W2026048654 @default.
- W4220786098 cites W2055992220 @default.
- W4220786098 cites W2293634267 @default.
- W4220786098 cites W2334590101 @default.
- W4220786098 cites W2591507999 @default.
- W4220786098 cites W2596239952 @default.
- W4220786098 cites W2604493845 @default.
- W4220786098 cites W2605428484 @default.
- W4220786098 cites W2608006932 @default.
- W4220786098 cites W2619263430 @default.
- W4220786098 cites W2765287370 @default.
- W4220786098 cites W2783121489 @default.
- W4220786098 cites W2784349718 @default.
- W4220786098 cites W2792112675 @default.
- W4220786098 cites W2795937275 @default.
- W4220786098 cites W2803471577 @default.
- W4220786098 cites W2881509088 @default.
- W4220786098 cites W2888475215 @default.
- W4220786098 cites W2913665866 @default.
- W4220786098 cites W2942153030 @default.
- W4220786098 cites W2971981774 @default.
- W4220786098 cites W2982083323 @default.
- W4220786098 cites W2988743840 @default.
- W4220786098 cites W2996750593 @default.
- W4220786098 cites W2997894915 @default.
- W4220786098 cites W3010383105 @default.
- W4220786098 cites W3021747529 @default.
- W4220786098 cites W3027897166 @default.
- W4220786098 cites W3035969262 @default.
- W4220786098 cites W3036215561 @default.
- W4220786098 cites W3037035195 @default.
- W4220786098 cites W3049618663 @default.
- W4220786098 cites W3096027317 @default.
- W4220786098 cites W3122109354 @default.
- W4220786098 cites W3171449270 @default.
- W4220786098 cites W3172017638 @default.
- W4220786098 cites W2945580316 @default.
- W4220786098 doi "https://doi.org/10.1109/aset53988.2022.9734313" @default.
- W4220786098 hasPublicationYear "2022" @default.
- W4220786098 type Work @default.
- W4220786098 citedByCount "1" @default.
- W4220786098 countsByYear W42207860982023 @default.
- W4220786098 crossrefType "proceedings-article" @default.
- W4220786098 hasAuthorship W4220786098A5017736682 @default.
- W4220786098 hasAuthorship W4220786098A5061099968 @default.
- W4220786098 hasAuthorship W4220786098A5091843240 @default.
- W4220786098 hasConcept C111472728 @default.
- W4220786098 hasConcept C117671659 @default.
- W4220786098 hasConcept C127413603 @default.
- W4220786098 hasConcept C138885662 @default.
- W4220786098 hasConcept C146978453 @default.
- W4220786098 hasConcept C167740415 @default.
- W4220786098 hasConcept C17744445 @default.
- W4220786098 hasConcept C199539241 @default.
- W4220786098 hasConcept C202444582 @default.
- W4220786098 hasConcept C2779356469 @default.
- W4220786098 hasConcept C2779530757 @default.
- W4220786098 hasConcept C33923547 @default.
- W4220786098 hasConcept C41008148 @default.
- W4220786098 hasConcept C524769229 @default.
- W4220786098 hasConcept C78519656 @default.
- W4220786098 hasConcept C9652623 @default.
- W4220786098 hasConcept C99862985 @default.
- W4220786098 hasConceptScore W4220786098C111472728 @default.
- W4220786098 hasConceptScore W4220786098C117671659 @default.
- W4220786098 hasConceptScore W4220786098C127413603 @default.
- W4220786098 hasConceptScore W4220786098C138885662 @default.
- W4220786098 hasConceptScore W4220786098C146978453 @default.
- W4220786098 hasConceptScore W4220786098C167740415 @default.
- W4220786098 hasConceptScore W4220786098C17744445 @default.
- W4220786098 hasConceptScore W4220786098C199539241 @default.
- W4220786098 hasConceptScore W4220786098C202444582 @default.
- W4220786098 hasConceptScore W4220786098C2779356469 @default.
- W4220786098 hasConceptScore W4220786098C2779530757 @default.
- W4220786098 hasConceptScore W4220786098C33923547 @default.
- W4220786098 hasConceptScore W4220786098C41008148 @default.
- W4220786098 hasConceptScore W4220786098C524769229 @default.
- W4220786098 hasConceptScore W4220786098C78519656 @default.
- W4220786098 hasConceptScore W4220786098C9652623 @default.
- W4220786098 hasConceptScore W4220786098C99862985 @default.
- W4220786098 hasLocation W42207860981 @default.
- W4220786098 hasOpenAccess W4220786098 @default.
- W4220786098 hasPrimaryLocation W42207860981 @default.
- W4220786098 hasRelatedWork W2296975255 @default.
- W4220786098 hasRelatedWork W2473643997 @default.
- W4220786098 hasRelatedWork W2789628539 @default.
- W4220786098 hasRelatedWork W2987280485 @default.
- W4220786098 hasRelatedWork W3003445279 @default.
- W4220786098 hasRelatedWork W3010766690 @default.
- W4220786098 hasRelatedWork W3017279793 @default.
- W4220786098 hasRelatedWork W3159930164 @default.
- W4220786098 hasRelatedWork W3161266551 @default.