Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220786945> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4220786945 endingPage "1087" @default.
- W4220786945 startingPage "1078" @default.
- W4220786945 abstract "Background High mortality rates in patients with acute heart failure (AHF) necessitate proper risk stratification. However, risk-assessment tools for long-term mortality are largely lacking. We aimed to develop a machine-learning (ML)-based risk-prediction model for long-term all-cause mortality in patients admitted for AHF. Methods and Results The ML model, based on boosted a Cox regression algorithm (CoxBoost), was trained with 2704 consecutive patients hospitalized for AHF (median age 73 years, 55% male, and median left ventricular ejection fraction 38%). We selected 27 input variables, including 19 clinical features and 8 echocardiographic parameters, for model development. The best-performing model, along with pre-existing risk scores (BIOSTAT-CHF and AHEAD scores), was validated in an independent test cohort of 1608 patients. During the median 32 months (interquartile range 12–54 months) of the follow-up period, 1050 (38.8%) and 690 (42.9%) deaths occurred in the training and test cohorts, respectively. The area under the receiver operating characteristic curve (AUROC) of the ML model for all-cause mortality at 3 years was 0.761 (95% CI: 0.754–0.767) in the training cohort and 0.760 (95% CI: 0.752–0.768) in the test cohort. The discrimination performance of the ML model significantly outperformed those of the pre-existing risk scores (AUROC 0.714, 95% CI 0.706–0.722 by BIOSTAT-CHF; and 0.681, 95% CI 0.672–0.689 by AHEAD). Risk stratification based on the ML model identified patients at high mortality risk regardless of heart failure phenotypes. Conclusions The ML-based mortality-prediction model can predict long-term mortality accurately, leading to optimal risk stratification of patients with AHF." @default.
- W4220786945 created "2022-04-03" @default.
- W4220786945 creator A5041753385 @default.
- W4220786945 creator A5048912938 @default.
- W4220786945 creator A5050864453 @default.
- W4220786945 creator A5052752004 @default.
- W4220786945 creator A5070061558 @default.
- W4220786945 creator A5079016741 @default.
- W4220786945 date "2022-07-01" @default.
- W4220786945 modified "2023-09-25" @default.
- W4220786945 title "Predicting Long-Term Mortality in Patients With Acute Heart Failure by Using Machine Learning" @default.
- W4220786945 cites W1883484737 @default.
- W4220786945 cites W1954582175 @default.
- W4220786945 cites W1985054501 @default.
- W4220786945 cites W1986187671 @default.
- W4220786945 cites W1993823264 @default.
- W4220786945 cites W1997534793 @default.
- W4220786945 cites W2001984572 @default.
- W4220786945 cites W2025266808 @default.
- W4220786945 cites W2043743685 @default.
- W4220786945 cites W204697558 @default.
- W4220786945 cites W2124624517 @default.
- W4220786945 cites W2137534212 @default.
- W4220786945 cites W2148564254 @default.
- W4220786945 cites W2328176404 @default.
- W4220786945 cites W2416186763 @default.
- W4220786945 cites W2427094903 @default.
- W4220786945 cites W2594341951 @default.
- W4220786945 cites W2800087803 @default.
- W4220786945 cites W2800855378 @default.
- W4220786945 cites W2885442920 @default.
- W4220786945 cites W2921763762 @default.
- W4220786945 cites W2958682939 @default.
- W4220786945 cites W2995068554 @default.
- W4220786945 cites W2996188219 @default.
- W4220786945 cites W3113949091 @default.
- W4220786945 cites W3117475623 @default.
- W4220786945 cites W3188788033 @default.
- W4220786945 doi "https://doi.org/10.1016/j.cardfail.2022.02.012" @default.
- W4220786945 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35301108" @default.
- W4220786945 hasPublicationYear "2022" @default.
- W4220786945 type Work @default.
- W4220786945 citedByCount "5" @default.
- W4220786945 countsByYear W42207869452022 @default.
- W4220786945 countsByYear W42207869452023 @default.
- W4220786945 crossrefType "journal-article" @default.
- W4220786945 hasAuthorship W4220786945A5041753385 @default.
- W4220786945 hasAuthorship W4220786945A5048912938 @default.
- W4220786945 hasAuthorship W4220786945A5050864453 @default.
- W4220786945 hasAuthorship W4220786945A5052752004 @default.
- W4220786945 hasAuthorship W4220786945A5070061558 @default.
- W4220786945 hasAuthorship W4220786945A5079016741 @default.
- W4220786945 hasConcept C119060515 @default.
- W4220786945 hasConcept C126322002 @default.
- W4220786945 hasConcept C2778198053 @default.
- W4220786945 hasConcept C3020404979 @default.
- W4220786945 hasConcept C50382708 @default.
- W4220786945 hasConcept C58471807 @default.
- W4220786945 hasConcept C71924100 @default.
- W4220786945 hasConcept C72563966 @default.
- W4220786945 hasConcept C78085059 @default.
- W4220786945 hasConceptScore W4220786945C119060515 @default.
- W4220786945 hasConceptScore W4220786945C126322002 @default.
- W4220786945 hasConceptScore W4220786945C2778198053 @default.
- W4220786945 hasConceptScore W4220786945C3020404979 @default.
- W4220786945 hasConceptScore W4220786945C50382708 @default.
- W4220786945 hasConceptScore W4220786945C58471807 @default.
- W4220786945 hasConceptScore W4220786945C71924100 @default.
- W4220786945 hasConceptScore W4220786945C72563966 @default.
- W4220786945 hasConceptScore W4220786945C78085059 @default.
- W4220786945 hasIssue "7" @default.
- W4220786945 hasLocation W42207869451 @default.
- W4220786945 hasLocation W42207869452 @default.
- W4220786945 hasOpenAccess W4220786945 @default.
- W4220786945 hasPrimaryLocation W42207869451 @default.
- W4220786945 hasRelatedWork W2063369692 @default.
- W4220786945 hasRelatedWork W2098694409 @default.
- W4220786945 hasRelatedWork W2417623626 @default.
- W4220786945 hasRelatedWork W2753481749 @default.
- W4220786945 hasRelatedWork W3032854799 @default.
- W4220786945 hasRelatedWork W3136887771 @default.
- W4220786945 hasRelatedWork W4207030337 @default.
- W4220786945 hasRelatedWork W4221109707 @default.
- W4220786945 hasRelatedWork W4366351644 @default.
- W4220786945 hasRelatedWork W4380442253 @default.
- W4220786945 hasVolume "28" @default.
- W4220786945 isParatext "false" @default.
- W4220786945 isRetracted "false" @default.
- W4220786945 workType "article" @default.