Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220787432> ?p ?o ?g. }
- W4220787432 endingPage "4578" @default.
- W4220787432 startingPage "4561" @default.
- W4220787432 abstract "Due to the random and fluctuating nature of renewable electricity, storing it in hydrogen by electrolysis of water through proton exchange membrane water electrolyzers (PEMWEs) is considered a very promising way to increase energy utilization efficiency. However, as the key component, membrane electrode assembly (MEA) in PEMWEs is still facing challenges due to its cost and durability. Optimization attempts through conventional trial-and-error methods are inefficient due to the complex design parameters that span different scales. To avoid expensive investments in experiments and time, machine learning (ML) is introduced to achieve reliable prediction of MEA performance (current density@1.5 ∼ 2.0 V; 0.1 V as the interval) and durability (average decay rate) via data-driven models. For instance, the as-trained gradient boost regression model could predict the current density@1.9 V with an R2 of 0.943 on the test set. Moreover, different black-box interpretation methods were innovatively applied to directly illustrate the insights from ML models into important parameters, and consensus could be reached with previous studies as a proof of data-driven models’ reliability. In addition to providing novel guidance in designing MEAs, the proposed ML workflow could be considered a new research paradigm and extended to other energy-related fields." @default.
- W4220787432 created "2022-04-03" @default.
- W4220787432 creator A5002719379 @default.
- W4220787432 creator A5004808990 @default.
- W4220787432 creator A5005494911 @default.
- W4220787432 creator A5018679788 @default.
- W4220787432 creator A5025107745 @default.
- W4220787432 creator A5047261565 @default.
- W4220787432 creator A5055152383 @default.
- W4220787432 creator A5055283292 @default.
- W4220787432 creator A5072004374 @default.
- W4220787432 creator A5078806458 @default.
- W4220787432 date "2022-03-25" @default.
- W4220787432 modified "2023-10-02" @default.
- W4220787432 title "Guiding the Optimization of Membrane Electrode Assembly in a Proton Exchange Membrane Water Electrolyzer by Machine Learning Modeling and Black-Box Interpretation" @default.
- W4220787432 cites W1433073233 @default.
- W4220787432 cites W1564174905 @default.
- W4220787432 cites W1987155170 @default.
- W4220787432 cites W2000035698 @default.
- W4220787432 cites W2007772808 @default.
- W4220787432 cites W2038249481 @default.
- W4220787432 cites W2048231652 @default.
- W4220787432 cites W2051339270 @default.
- W4220787432 cites W2074947001 @default.
- W4220787432 cites W2084147235 @default.
- W4220787432 cites W2086820336 @default.
- W4220787432 cites W2088958220 @default.
- W4220787432 cites W2122697556 @default.
- W4220787432 cites W2133406747 @default.
- W4220787432 cites W2331528766 @default.
- W4220787432 cites W2507150667 @default.
- W4220787432 cites W2519007791 @default.
- W4220787432 cites W2542174119 @default.
- W4220787432 cites W2547752795 @default.
- W4220787432 cites W2613955866 @default.
- W4220787432 cites W2756009472 @default.
- W4220787432 cites W2786693279 @default.
- W4220787432 cites W2789556251 @default.
- W4220787432 cites W2791027358 @default.
- W4220787432 cites W2795115153 @default.
- W4220787432 cites W2802309268 @default.
- W4220787432 cites W2884958793 @default.
- W4220787432 cites W2903775647 @default.
- W4220787432 cites W2910372448 @default.
- W4220787432 cites W2912905551 @default.
- W4220787432 cites W2914002630 @default.
- W4220787432 cites W2914433870 @default.
- W4220787432 cites W2921915735 @default.
- W4220787432 cites W2945811799 @default.
- W4220787432 cites W2954483607 @default.
- W4220787432 cites W2963415198 @default.
- W4220787432 cites W2968830447 @default.
- W4220787432 cites W2979809658 @default.
- W4220787432 cites W2989864659 @default.
- W4220787432 cites W3000644301 @default.
- W4220787432 cites W3007217854 @default.
- W4220787432 cites W3007780163 @default.
- W4220787432 cites W3025104221 @default.
- W4220787432 cites W3035738108 @default.
- W4220787432 cites W3092024150 @default.
- W4220787432 cites W3118398482 @default.
- W4220787432 cites W3127818450 @default.
- W4220787432 cites W3164483271 @default.
- W4220787432 cites W3172036260 @default.
- W4220787432 cites W3175075975 @default.
- W4220787432 cites W3184595924 @default.
- W4220787432 cites W3192375458 @default.
- W4220787432 cites W3197057281 @default.
- W4220787432 cites W4214480506 @default.
- W4220787432 cites W4247157704 @default.
- W4220787432 cites W4376595687 @default.
- W4220787432 doi "https://doi.org/10.1021/acssuschemeng.1c08522" @default.
- W4220787432 hasPublicationYear "2022" @default.
- W4220787432 type Work @default.
- W4220787432 citedByCount "7" @default.
- W4220787432 countsByYear W42207874322022 @default.
- W4220787432 countsByYear W42207874322023 @default.
- W4220787432 crossrefType "journal-article" @default.
- W4220787432 hasAuthorship W4220787432A5002719379 @default.
- W4220787432 hasAuthorship W4220787432A5004808990 @default.
- W4220787432 hasAuthorship W4220787432A5005494911 @default.
- W4220787432 hasAuthorship W4220787432A5018679788 @default.
- W4220787432 hasAuthorship W4220787432A5025107745 @default.
- W4220787432 hasAuthorship W4220787432A5047261565 @default.
- W4220787432 hasAuthorship W4220787432A5055152383 @default.
- W4220787432 hasAuthorship W4220787432A5055283292 @default.
- W4220787432 hasAuthorship W4220787432A5072004374 @default.
- W4220787432 hasAuthorship W4220787432A5078806458 @default.
- W4220787432 hasConcept C100729193 @default.
- W4220787432 hasConcept C104304963 @default.
- W4220787432 hasConcept C119857082 @default.
- W4220787432 hasConcept C127413603 @default.
- W4220787432 hasConcept C147789679 @default.
- W4220787432 hasConcept C154945302 @default.
- W4220787432 hasConcept C163127949 @default.
- W4220787432 hasConcept C169903167 @default.
- W4220787432 hasConcept C17525397 @default.
- W4220787432 hasConcept C177212765 @default.