Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220787598> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4220787598 endingPage "66" @default.
- W4220787598 startingPage "57" @default.
- W4220787598 abstract "Applications of wearable sensors for Hand Gesture Recognition (HGR) have been gaining popularity in recent years. Among the proposed methods, deep neural networks with many hidden layers are promising to address the requirements of this wearable activity recognition. They can directly uncover features tied to the dynamics of HGR, from simple motion encoding in lower layers to more complex motion dynamics in upper layers. However, these methods require many efforts of researches to build an efficient neural network architecture. This study proposes an integrated method that allows finding the best neural networks for HGR using wearable sensors. The proposed method consists of two parts: (i) A generic Multi-Layer Perceptron (MLP) deep neural network and (ii) A genetic algorithm. We applied the genetic algorithm to find the best network architecture in terms of accuracy. At each generation of the algorithm, a new set of architecture was created with different Hyper parameters (the activation, optimizer, the number of layers, neurons and epochs). Extensive experiments were conducted on a dataset containing 18.000 gesture samples from 20 subjects. Experimental results demonstrated the performance and efficiency of the proposed methods in finding deep neural network architectures for HGR. The obtained neural network achieves 89.21% of accuracy and outperforms the previous study on the same dataset." @default.
- W4220787598 created "2022-04-03" @default.
- W4220787598 creator A5014920897 @default.
- W4220787598 creator A5029799620 @default.
- W4220787598 date "2022-02-01" @default.
- W4220787598 modified "2023-10-01" @default.
- W4220787598 title "Optimization of Multi-Layer Perceptron Deep Neural Networks using Genetic Algorithms for Hand Gesture Recognition" @default.
- W4220787598 doi "https://doi.org/10.3844/jcssp.2022.57.66" @default.
- W4220787598 hasPublicationYear "2022" @default.
- W4220787598 type Work @default.
- W4220787598 citedByCount "0" @default.
- W4220787598 crossrefType "journal-article" @default.
- W4220787598 hasAuthorship W4220787598A5014920897 @default.
- W4220787598 hasAuthorship W4220787598A5029799620 @default.
- W4220787598 hasBestOaLocation W42207875981 @default.
- W4220787598 hasConcept C108583219 @default.
- W4220787598 hasConcept C11413529 @default.
- W4220787598 hasConcept C119857082 @default.
- W4220787598 hasConcept C149635348 @default.
- W4220787598 hasConcept C150594956 @default.
- W4220787598 hasConcept C153180895 @default.
- W4220787598 hasConcept C154945302 @default.
- W4220787598 hasConcept C175202392 @default.
- W4220787598 hasConcept C177264268 @default.
- W4220787598 hasConcept C178790620 @default.
- W4220787598 hasConcept C179717631 @default.
- W4220787598 hasConcept C185592680 @default.
- W4220787598 hasConcept C199360897 @default.
- W4220787598 hasConcept C207347870 @default.
- W4220787598 hasConcept C2779227376 @default.
- W4220787598 hasConcept C41008148 @default.
- W4220787598 hasConcept C50644808 @default.
- W4220787598 hasConcept C60908668 @default.
- W4220787598 hasConcept C8880873 @default.
- W4220787598 hasConceptScore W4220787598C108583219 @default.
- W4220787598 hasConceptScore W4220787598C11413529 @default.
- W4220787598 hasConceptScore W4220787598C119857082 @default.
- W4220787598 hasConceptScore W4220787598C149635348 @default.
- W4220787598 hasConceptScore W4220787598C150594956 @default.
- W4220787598 hasConceptScore W4220787598C153180895 @default.
- W4220787598 hasConceptScore W4220787598C154945302 @default.
- W4220787598 hasConceptScore W4220787598C175202392 @default.
- W4220787598 hasConceptScore W4220787598C177264268 @default.
- W4220787598 hasConceptScore W4220787598C178790620 @default.
- W4220787598 hasConceptScore W4220787598C179717631 @default.
- W4220787598 hasConceptScore W4220787598C185592680 @default.
- W4220787598 hasConceptScore W4220787598C199360897 @default.
- W4220787598 hasConceptScore W4220787598C207347870 @default.
- W4220787598 hasConceptScore W4220787598C2779227376 @default.
- W4220787598 hasConceptScore W4220787598C41008148 @default.
- W4220787598 hasConceptScore W4220787598C50644808 @default.
- W4220787598 hasConceptScore W4220787598C60908668 @default.
- W4220787598 hasConceptScore W4220787598C8880873 @default.
- W4220787598 hasIssue "2" @default.
- W4220787598 hasLocation W42207875981 @default.
- W4220787598 hasOpenAccess W4220787598 @default.
- W4220787598 hasPrimaryLocation W42207875981 @default.
- W4220787598 hasRelatedWork W1501213224 @default.
- W4220787598 hasRelatedWork W1501774291 @default.
- W4220787598 hasRelatedWork W1525436282 @default.
- W4220787598 hasRelatedWork W3106494386 @default.
- W4220787598 hasRelatedWork W3211546796 @default.
- W4220787598 hasRelatedWork W4231994957 @default.
- W4220787598 hasRelatedWork W4235136221 @default.
- W4220787598 hasRelatedWork W4285294654 @default.
- W4220787598 hasRelatedWork W4322750901 @default.
- W4220787598 hasRelatedWork W4381616756 @default.
- W4220787598 hasVolume "18" @default.
- W4220787598 isParatext "false" @default.
- W4220787598 isRetracted "false" @default.
- W4220787598 workType "article" @default.