Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220791031> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4220791031 endingPage "389" @default.
- W4220791031 startingPage "383" @default.
- W4220791031 abstract "Intracranial hemorrhage (ICH) is considered an emergency that requires rapid medical or surgical management. Previous studies have used artificial intelligence to attempt to expedite the diagnosis of this pathology on neuroimaging. However, these studies have used local, institution-specific data for training of networks that limit deployment of across broader hospital networks or regions because of data biases.To demonstrate the creation of a neural network based on an openly available imaging data tested on data from our institution demonstrating a high-efficacy, institution-agnostic network.A data set was created from publicly available noncontrast computed tomography images of known ICH. These data were used to train a neural network using distinct windowing and augmentation. This network was then validated in 2 phases using cohort-based (phase 1) and longitudinal (phase 2) approaches.Our convolutional neural network was trained on 752 807 openly available slices, which included 112 762 slices containing intracranial hemorrhage. In phase 1, the final network performance for intracranial hemorrhage showed a receiver operating characteristic curve (AUC) of 0.99. At the inflection point, our model showed a sensitivity of 98% at a threshold specificity of 99%. In phase 2, we obtained an AUC of 0.98 after analysis of 726 scans with a negative predictive value of 99.70% (n = 726).We demonstrate an effective neural network trained on completely open data for screening ICH at an unrelated institution. This study demonstrates a proof of concept for screening networks for multiple sites while maintaining high efficacy." @default.
- W4220791031 created "2022-04-03" @default.
- W4220791031 creator A5002841192 @default.
- W4220791031 creator A5005841146 @default.
- W4220791031 creator A5012417893 @default.
- W4220791031 creator A5014036943 @default.
- W4220791031 creator A5016549622 @default.
- W4220791031 creator A5029672551 @default.
- W4220791031 creator A5046813159 @default.
- W4220791031 creator A5059446265 @default.
- W4220791031 date "2022-02-10" @default.
- W4220791031 modified "2023-10-18" @default.
- W4220791031 title "Mass Deployment of Deep Neural Network: Real-Time Proof of Concept With Screening of Intracranial Hemorrhage Using an Open Data Set" @default.
- W4220791031 cites W2136587148 @default.
- W4220791031 cites W2725984455 @default.
- W4220791031 cites W2795774310 @default.
- W4220791031 cites W2883545264 @default.
- W4220791031 cites W2885688423 @default.
- W4220791031 cites W2943491685 @default.
- W4220791031 cites W2945229969 @default.
- W4220791031 cites W2966481455 @default.
- W4220791031 cites W2969412643 @default.
- W4220791031 cites W2979307665 @default.
- W4220791031 cites W3023284086 @default.
- W4220791031 cites W3034225237 @default.
- W4220791031 cites W3089635656 @default.
- W4220791031 cites W3096202328 @default.
- W4220791031 cites W3108582022 @default.
- W4220791031 cites W3113818277 @default.
- W4220791031 cites W3188199774 @default.
- W4220791031 doi "https://doi.org/10.1227/neu.0000000000001841" @default.
- W4220791031 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35132970" @default.
- W4220791031 hasPublicationYear "2022" @default.
- W4220791031 type Work @default.
- W4220791031 citedByCount "2" @default.
- W4220791031 countsByYear W42207910312023 @default.
- W4220791031 crossrefType "journal-article" @default.
- W4220791031 hasAuthorship W4220791031A5002841192 @default.
- W4220791031 hasAuthorship W4220791031A5005841146 @default.
- W4220791031 hasAuthorship W4220791031A5012417893 @default.
- W4220791031 hasAuthorship W4220791031A5014036943 @default.
- W4220791031 hasAuthorship W4220791031A5016549622 @default.
- W4220791031 hasAuthorship W4220791031A5029672551 @default.
- W4220791031 hasAuthorship W4220791031A5046813159 @default.
- W4220791031 hasAuthorship W4220791031A5059446265 @default.
- W4220791031 hasConcept C105339364 @default.
- W4220791031 hasConcept C111919701 @default.
- W4220791031 hasConcept C118552586 @default.
- W4220791031 hasConcept C119857082 @default.
- W4220791031 hasConcept C124101348 @default.
- W4220791031 hasConcept C126322002 @default.
- W4220791031 hasConcept C154945302 @default.
- W4220791031 hasConcept C177264268 @default.
- W4220791031 hasConcept C199360897 @default.
- W4220791031 hasConcept C41008148 @default.
- W4220791031 hasConcept C50644808 @default.
- W4220791031 hasConcept C58471807 @default.
- W4220791031 hasConcept C58489278 @default.
- W4220791031 hasConcept C58693492 @default.
- W4220791031 hasConcept C71924100 @default.
- W4220791031 hasConcept C81363708 @default.
- W4220791031 hasConceptScore W4220791031C105339364 @default.
- W4220791031 hasConceptScore W4220791031C111919701 @default.
- W4220791031 hasConceptScore W4220791031C118552586 @default.
- W4220791031 hasConceptScore W4220791031C119857082 @default.
- W4220791031 hasConceptScore W4220791031C124101348 @default.
- W4220791031 hasConceptScore W4220791031C126322002 @default.
- W4220791031 hasConceptScore W4220791031C154945302 @default.
- W4220791031 hasConceptScore W4220791031C177264268 @default.
- W4220791031 hasConceptScore W4220791031C199360897 @default.
- W4220791031 hasConceptScore W4220791031C41008148 @default.
- W4220791031 hasConceptScore W4220791031C50644808 @default.
- W4220791031 hasConceptScore W4220791031C58471807 @default.
- W4220791031 hasConceptScore W4220791031C58489278 @default.
- W4220791031 hasConceptScore W4220791031C58693492 @default.
- W4220791031 hasConceptScore W4220791031C71924100 @default.
- W4220791031 hasConceptScore W4220791031C81363708 @default.
- W4220791031 hasIssue "4" @default.
- W4220791031 hasLocation W42207910311 @default.
- W4220791031 hasLocation W42207910312 @default.
- W4220791031 hasOpenAccess W4220791031 @default.
- W4220791031 hasPrimaryLocation W42207910311 @default.
- W4220791031 hasRelatedWork W2369811061 @default.
- W4220791031 hasRelatedWork W2566006169 @default.
- W4220791031 hasRelatedWork W2770234245 @default.
- W4220791031 hasRelatedWork W2922305141 @default.
- W4220791031 hasRelatedWork W2987774938 @default.
- W4220791031 hasRelatedWork W3089997100 @default.
- W4220791031 hasRelatedWork W3185156046 @default.
- W4220791031 hasRelatedWork W4229499248 @default.
- W4220791031 hasRelatedWork W4378874356 @default.
- W4220791031 hasRelatedWork W632915154 @default.
- W4220791031 hasVolume "90" @default.
- W4220791031 isParatext "false" @default.
- W4220791031 isRetracted "false" @default.
- W4220791031 workType "article" @default.