Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220791357> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4220791357 endingPage "7762" @default.
- W4220791357 startingPage "7751" @default.
- W4220791357 abstract "Alzheimer's disease (AD) is a high-risk and atrophic neurological illness that slowly and gradually destroys brain cells (i.e. neurons). As the most common type of amentia, AD affects 60–65% of all people with amentia and poses major health dangers to middle-aged and elderly people. For classification of AD in the early stage, classification systems and computer-aided diagnostic techniques have been developed. Previously, machine learning approaches were applied to develop diagnostic systems by extracting features from neural images. Currently, deep learning approaches have been used in many real-time medical imaging applications. In this study, two deep neural network techniques, AlexNet and Restnet50, were applied for the classification and recognition of AD. The data used in this study to evaluate and test the proposed model included those from brain magnetic resonance imaging (MRI) images collected from the Kaggle website. A convolutional neural network (CNN) algorithm was applied to classify AD efficiently. CNNs were pre-trained using AlexNet and Restnet50 transfer learning models. The results of this experimentation showed that the proposed method is superior to the existing systems in terms of detection accuracy. The AlexNet model achieved outstanding performance based on five evaluation metrics (accuracy, F1 score, precision, sensitivity, and specificity) for the brain MRI datasets. AlexNet displayed an accuracy of 94.53%, specificity of 98.21%, F1 score of 94.12%, and sensitivity of 100%, outperforming Restnet50. The proposed method can help improve CAD methods for AD in medical investigations." @default.
- W4220791357 created "2022-04-03" @default.
- W4220791357 creator A5016310275 @default.
- W4220791357 date "2022-01-31" @default.
- W4220791357 modified "2023-10-17" @default.
- W4220791357 title "Diagnosis and classification of Alzheimer's disease by using a convolution neural network algorithm" @default.
- W4220791357 cites W1948205069 @default.
- W4220791357 cites W1980872192 @default.
- W4220791357 cites W2023739625 @default.
- W4220791357 cites W2028158228 @default.
- W4220791357 cites W2028580299 @default.
- W4220791357 cites W2171831801 @default.
- W4220791357 cites W2218823830 @default.
- W4220791357 cites W2407365872 @default.
- W4220791357 cites W2593468621 @default.
- W4220791357 cites W2626513856 @default.
- W4220791357 cites W2784137019 @default.
- W4220791357 cites W2905035821 @default.
- W4220791357 cites W2931768583 @default.
- W4220791357 cites W2952992882 @default.
- W4220791357 cites W2969763172 @default.
- W4220791357 cites W3003644065 @default.
- W4220791357 cites W3034151505 @default.
- W4220791357 cites W3145812136 @default.
- W4220791357 cites W4211050998 @default.
- W4220791357 doi "https://doi.org/10.1007/s00500-022-06762-0" @default.
- W4220791357 hasPublicationYear "2022" @default.
- W4220791357 type Work @default.
- W4220791357 citedByCount "7" @default.
- W4220791357 countsByYear W42207913572023 @default.
- W4220791357 crossrefType "journal-article" @default.
- W4220791357 hasAuthorship W4220791357A5016310275 @default.
- W4220791357 hasBestOaLocation W42207913572 @default.
- W4220791357 hasConcept C108583219 @default.
- W4220791357 hasConcept C119857082 @default.
- W4220791357 hasConcept C127413603 @default.
- W4220791357 hasConcept C148524875 @default.
- W4220791357 hasConcept C150899416 @default.
- W4220791357 hasConcept C153180895 @default.
- W4220791357 hasConcept C154945302 @default.
- W4220791357 hasConcept C21200559 @default.
- W4220791357 hasConcept C24326235 @default.
- W4220791357 hasConcept C2779549770 @default.
- W4220791357 hasConcept C31601959 @default.
- W4220791357 hasConcept C41008148 @default.
- W4220791357 hasConcept C45347329 @default.
- W4220791357 hasConcept C50644808 @default.
- W4220791357 hasConcept C81363708 @default.
- W4220791357 hasConceptScore W4220791357C108583219 @default.
- W4220791357 hasConceptScore W4220791357C119857082 @default.
- W4220791357 hasConceptScore W4220791357C127413603 @default.
- W4220791357 hasConceptScore W4220791357C148524875 @default.
- W4220791357 hasConceptScore W4220791357C150899416 @default.
- W4220791357 hasConceptScore W4220791357C153180895 @default.
- W4220791357 hasConceptScore W4220791357C154945302 @default.
- W4220791357 hasConceptScore W4220791357C21200559 @default.
- W4220791357 hasConceptScore W4220791357C24326235 @default.
- W4220791357 hasConceptScore W4220791357C2779549770 @default.
- W4220791357 hasConceptScore W4220791357C31601959 @default.
- W4220791357 hasConceptScore W4220791357C41008148 @default.
- W4220791357 hasConceptScore W4220791357C45347329 @default.
- W4220791357 hasConceptScore W4220791357C50644808 @default.
- W4220791357 hasConceptScore W4220791357C81363708 @default.
- W4220791357 hasFunder F4320322804 @default.
- W4220791357 hasIssue "16" @default.
- W4220791357 hasLocation W42207913571 @default.
- W4220791357 hasLocation W42207913572 @default.
- W4220791357 hasOpenAccess W4220791357 @default.
- W4220791357 hasPrimaryLocation W42207913571 @default.
- W4220791357 hasRelatedWork W2731899572 @default.
- W4220791357 hasRelatedWork W3018421652 @default.
- W4220791357 hasRelatedWork W3021430260 @default.
- W4220791357 hasRelatedWork W3091976719 @default.
- W4220791357 hasRelatedWork W3192840557 @default.
- W4220791357 hasRelatedWork W4220996320 @default.
- W4220791357 hasRelatedWork W4285149559 @default.
- W4220791357 hasRelatedWork W4312200629 @default.
- W4220791357 hasRelatedWork W4312417841 @default.
- W4220791357 hasRelatedWork W4382286161 @default.
- W4220791357 hasVolume "26" @default.
- W4220791357 isParatext "false" @default.
- W4220791357 isRetracted "false" @default.
- W4220791357 workType "article" @default.