Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220791370> ?p ?o ?g. }
- W4220791370 abstract "The input image of a blurry glioma image segmentation is, usually, very unclear. It is difficult to obtain the accurate contour line of image segmentation. The main challenge facing the researchers is to correctly determine the area where the points on the contour line belong to the glioma image. This article highlights the mechanism of formation of glioma and provides an image segmentation prediction model to assist in the accurate division of glioma contour points. The proposed prediction model of segmentation associated with the process of the formation of glioma is innovative and challenging. Bose-Einstein Condensate (BEC) is a microscopic quantum phenomenon in which atoms condense to the ground state of energy as the temperature approaches absolute zero. In this article, we propose a BEC kernel function and a novel prediction model based on the BEC kernel to detect the relationship between the process of the BEC and the formation of a brain glioma. Furthermore, the theoretical derivation and proof of the prediction model are given from micro to macro through quantum mechanics, wave, oscillation of glioma, and statistical distribution of laws. The prediction model is a distinct segmentation model that is guided by BEC theory for blurry glioma image segmentation.Our approach is based on five tests. The first three tests aimed at confirming the measuring range of T and μ in the BEC kernel. The results are extended from -10 to 10, approximating the standard range to T ≤ 0, and μ from 0 to 6.7. Tests 4 and 5 are comparison tests. The comparison in Test 4 was based on various established cluster methods. The results show that our prediction model in image evaluation parameters of P, R, and F is the best amongst all the existent ten forms except for only one reference with the mean value of F that is between 0.88 and 0.93, while our approach returns between 0.85 and 0.99. Test 5 aimed to further compare our results, especially with CNN (Convolutional Neural Networks) methods, by challenging Brain Tumor Segmentation (BraTS) and clinic patient datasets. Our results were also better than all reference tests. In addition, the proposed prediction model with the BEC kernel is feasible and has a comparative validity in glioma image segmentation.Theoretical derivation and experimental verification show that the prediction model based on the BEC kernel can solve the problem of accurate segmentation of blurry glioma images. It demonstrates that the BEC kernel is a more feasible, valid, and accurate approach than a lot of the recent year segmentation methods. It is also an advanced and innovative model of prediction deducing from micro BEC theory to macro glioma image segmentation." @default.
- W4220791370 created "2022-04-03" @default.
- W4220791370 creator A5017947172 @default.
- W4220791370 creator A5028461057 @default.
- W4220791370 creator A5040625904 @default.
- W4220791370 creator A5056294685 @default.
- W4220791370 date "2022-03-18" @default.
- W4220791370 modified "2023-10-11" @default.
- W4220791370 title "A Novel Prediction Model for Brain Glioma Image Segmentation Based on the Theory of Bose-Einstein Condensate" @default.
- W4220791370 cites W1182987469 @default.
- W4220791370 cites W1961552350 @default.
- W4220791370 cites W1964483473 @default.
- W4220791370 cites W1974169179 @default.
- W4220791370 cites W1975815454 @default.
- W4220791370 cites W1988575969 @default.
- W4220791370 cites W1991602497 @default.
- W4220791370 cites W1993525402 @default.
- W4220791370 cites W1996819593 @default.
- W4220791370 cites W2003173977 @default.
- W4220791370 cites W2018287090 @default.
- W4220791370 cites W2018335979 @default.
- W4220791370 cites W2024484915 @default.
- W4220791370 cites W2031298231 @default.
- W4220791370 cites W2036924096 @default.
- W4220791370 cites W2052355182 @default.
- W4220791370 cites W2053411971 @default.
- W4220791370 cites W2062157671 @default.
- W4220791370 cites W2068569300 @default.
- W4220791370 cites W2079591553 @default.
- W4220791370 cites W2083531734 @default.
- W4220791370 cites W2092159648 @default.
- W4220791370 cites W2094979888 @default.
- W4220791370 cites W2110851535 @default.
- W4220791370 cites W2121323857 @default.
- W4220791370 cites W2135237314 @default.
- W4220791370 cites W2141271071 @default.
- W4220791370 cites W2147575013 @default.
- W4220791370 cites W2174572790 @default.
- W4220791370 cites W2330711910 @default.
- W4220791370 cites W2478330670 @default.
- W4220791370 cites W2514732394 @default.
- W4220791370 cites W2565293063 @default.
- W4220791370 cites W2566492562 @default.
- W4220791370 cites W2596962557 @default.
- W4220791370 cites W2728767292 @default.
- W4220791370 cites W2750927989 @default.
- W4220791370 cites W2752448697 @default.
- W4220791370 cites W2788764313 @default.
- W4220791370 cites W2793705791 @default.
- W4220791370 cites W2806597033 @default.
- W4220791370 cites W2898106616 @default.
- W4220791370 cites W2910854613 @default.
- W4220791370 cites W2929798403 @default.
- W4220791370 cites W2946616172 @default.
- W4220791370 cites W2963225700 @default.
- W4220791370 cites W2982238998 @default.
- W4220791370 cites W3012288106 @default.
- W4220791370 cites W3015258537 @default.
- W4220791370 cites W3018852185 @default.
- W4220791370 cites W3091962903 @default.
- W4220791370 cites W3093773676 @default.
- W4220791370 cites W3100822419 @default.
- W4220791370 cites W3103982318 @default.
- W4220791370 cites W3106073346 @default.
- W4220791370 cites W3128387207 @default.
- W4220791370 cites W3137456187 @default.
- W4220791370 cites W3143351114 @default.
- W4220791370 cites W376228468 @default.
- W4220791370 cites W4247714930 @default.
- W4220791370 cites W4255595088 @default.
- W4220791370 cites W4300553699 @default.
- W4220791370 cites W840517373 @default.
- W4220791370 cites W2131183157 @default.
- W4220791370 cites W2751272590 @default.
- W4220791370 doi "https://doi.org/10.3389/fmed.2022.794125" @default.
- W4220791370 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35372409" @default.
- W4220791370 hasPublicationYear "2022" @default.
- W4220791370 type Work @default.
- W4220791370 citedByCount "1" @default.
- W4220791370 countsByYear W42207913702023 @default.
- W4220791370 crossrefType "journal-article" @default.
- W4220791370 hasAuthorship W4220791370A5017947172 @default.
- W4220791370 hasAuthorship W4220791370A5028461057 @default.
- W4220791370 hasAuthorship W4220791370A5040625904 @default.
- W4220791370 hasAuthorship W4220791370A5056294685 @default.
- W4220791370 hasBestOaLocation W42207913701 @default.
- W4220791370 hasConcept C11413529 @default.
- W4220791370 hasConcept C114614502 @default.
- W4220791370 hasConcept C121332964 @default.
- W4220791370 hasConcept C121864883 @default.
- W4220791370 hasConcept C124504099 @default.
- W4220791370 hasConcept C153180895 @default.
- W4220791370 hasConcept C154945302 @default.
- W4220791370 hasConcept C159985019 @default.
- W4220791370 hasConcept C192562407 @default.
- W4220791370 hasConcept C198352243 @default.
- W4220791370 hasConcept C204323151 @default.
- W4220791370 hasConcept C2524010 @default.
- W4220791370 hasConcept C2778227246 @default.
- W4220791370 hasConcept C33923547 @default.