Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220791421> ?p ?o ?g. }
- W4220791421 endingPage "1018" @default.
- W4220791421 startingPage "988" @default.
- W4220791421 abstract "One of the primary goals that researchers look to achieve through customer base analysis is to leverage historical records of individual customer transactions and related context factors to forecast future behavior, and to link these forecasts with actionable characteristics of individuals, managerially significant customer sub-groups, and entire cohorts. This paper presents a new approach that helps firms leverage the automatic feature extraction capabilities of a specific type of deep learning models when applied to customer transaction histories in non-contractual business settings (i.e., when the time at which a customer becomes inactive is unobserved by the firm). We show how the proposed deep learning model improves on established models both in terms of individual-level accuracy and overall cohort-level bias. It also helps managers in capturing seasonal trends and other forms of purchase dynamics that are important to detect in a timely manner for the purpose of proactive customer-base management. We demonstrate the model performance in eight empirical real-life settings which vary broadly in transaction frequency, purchase (ir)regularity, customer attrition, availability of contextual information, seasonal variance, and cohort size. We showcase the flexibility of the approach and how the model further benefits from taking into account static (e.g., socio-economic variables, demographics) and dynamic context factors (e.g., weather, holiday seasons, marketing appeals). We make an open-source reference implementation of the newly developed method available at https://github.com/valendin/rfm2lstm." @default.
- W4220791421 created "2022-04-03" @default.
- W4220791421 creator A5081651125 @default.
- W4220791421 creator A5085790819 @default.
- W4220791421 creator A5086683790 @default.
- W4220791421 creator A5086992083 @default.
- W4220791421 date "2022-12-01" @default.
- W4220791421 modified "2023-09-26" @default.
- W4220791421 title "Customer base analysis with recurrent neural networks" @default.
- W4220791421 cites W1498436455 @default.
- W4220791421 cites W1678356000 @default.
- W4220791421 cites W1964270323 @default.
- W4220791421 cites W1972228345 @default.
- W4220791421 cites W1975051178 @default.
- W4220791421 cites W1995162211 @default.
- W4220791421 cites W2007321142 @default.
- W4220791421 cites W2013398831 @default.
- W4220791421 cites W2029640264 @default.
- W4220791421 cites W2044230810 @default.
- W4220791421 cites W2064675550 @default.
- W4220791421 cites W2066434428 @default.
- W4220791421 cites W2075211514 @default.
- W4220791421 cites W2075743760 @default.
- W4220791421 cites W2107199580 @default.
- W4220791421 cites W2107581815 @default.
- W4220791421 cites W2110562768 @default.
- W4220791421 cites W2111837988 @default.
- W4220791421 cites W2115769109 @default.
- W4220791421 cites W2136848157 @default.
- W4220791421 cites W2137888680 @default.
- W4220791421 cites W2151527246 @default.
- W4220791421 cites W2156957852 @default.
- W4220791421 cites W2162244340 @default.
- W4220791421 cites W2183387232 @default.
- W4220791421 cites W2327667672 @default.
- W4220791421 cites W2346354117 @default.
- W4220791421 cites W2396526128 @default.
- W4220791421 cites W2595177306 @default.
- W4220791421 cites W2944986679 @default.
- W4220791421 cites W2980462521 @default.
- W4220791421 cites W3086963313 @default.
- W4220791421 cites W3088138397 @default.
- W4220791421 cites W3121265029 @default.
- W4220791421 cites W3121703941 @default.
- W4220791421 cites W3121972256 @default.
- W4220791421 cites W3122149192 @default.
- W4220791421 cites W3122259816 @default.
- W4220791421 cites W3124035032 @default.
- W4220791421 cites W3124363521 @default.
- W4220791421 cites W3125877494 @default.
- W4220791421 cites W3126057910 @default.
- W4220791421 cites W3128340727 @default.
- W4220791421 cites W4253168449 @default.
- W4220791421 cites W4285074392 @default.
- W4220791421 doi "https://doi.org/10.1016/j.ijresmar.2022.02.007" @default.
- W4220791421 hasPublicationYear "2022" @default.
- W4220791421 type Work @default.
- W4220791421 citedByCount "1" @default.
- W4220791421 countsByYear W42207914212023 @default.
- W4220791421 crossrefType "journal-article" @default.
- W4220791421 hasAuthorship W4220791421A5081651125 @default.
- W4220791421 hasAuthorship W4220791421A5085790819 @default.
- W4220791421 hasAuthorship W4220791421A5086683790 @default.
- W4220791421 hasAuthorship W4220791421A5086992083 @default.
- W4220791421 hasConcept C101276457 @default.
- W4220791421 hasConcept C127722929 @default.
- W4220791421 hasConcept C140781008 @default.
- W4220791421 hasConcept C144133560 @default.
- W4220791421 hasConcept C149782125 @default.
- W4220791421 hasConcept C151730666 @default.
- W4220791421 hasConcept C153083717 @default.
- W4220791421 hasConcept C154945302 @default.
- W4220791421 hasConcept C162324750 @default.
- W4220791421 hasConcept C162853370 @default.
- W4220791421 hasConcept C2777276756 @default.
- W4220791421 hasConcept C2779343474 @default.
- W4220791421 hasConcept C2780378061 @default.
- W4220791421 hasConcept C41008148 @default.
- W4220791421 hasConcept C57660159 @default.
- W4220791421 hasConcept C75949130 @default.
- W4220791421 hasConcept C77088390 @default.
- W4220791421 hasConcept C86803240 @default.
- W4220791421 hasConceptScore W4220791421C101276457 @default.
- W4220791421 hasConceptScore W4220791421C127722929 @default.
- W4220791421 hasConceptScore W4220791421C140781008 @default.
- W4220791421 hasConceptScore W4220791421C144133560 @default.
- W4220791421 hasConceptScore W4220791421C149782125 @default.
- W4220791421 hasConceptScore W4220791421C151730666 @default.
- W4220791421 hasConceptScore W4220791421C153083717 @default.
- W4220791421 hasConceptScore W4220791421C154945302 @default.
- W4220791421 hasConceptScore W4220791421C162324750 @default.
- W4220791421 hasConceptScore W4220791421C162853370 @default.
- W4220791421 hasConceptScore W4220791421C2777276756 @default.
- W4220791421 hasConceptScore W4220791421C2779343474 @default.
- W4220791421 hasConceptScore W4220791421C2780378061 @default.
- W4220791421 hasConceptScore W4220791421C41008148 @default.
- W4220791421 hasConceptScore W4220791421C57660159 @default.
- W4220791421 hasConceptScore W4220791421C75949130 @default.