Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220792012> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4220792012 endingPage "191" @default.
- W4220792012 startingPage "170" @default.
- W4220792012 abstract "• A novel and efficient semi-external DFS algorithm EP-DFS is presented. • EP-DFS requires simpler CPU calculation and less memory space. • A novel index is devised to reduce the disk random accesses. • Extensive experiments are conducted on both real and synthetic datasets . As graphs grow in size, many real-world graphs are difficult to load into the primary memory of a computer. Thus, computing depth-first search (DFS) results (i.e., depth-first order or DFS-Tree) on the semi-external memory model is important to investigate. Semi-external algorithms assume that the primary memory can at least hold a spanning tree T of a graph G and gradually restructure T into a DFS-Tree, which is nontrivial. In this paper, we present a comprehensive study for the semi-external DFS problem. Based on a theoretical analysis of this problem, we introduce a new semi-external DFS algorithm called EP-DFS with a lightweight index N + - index . Unlike traditional algorithms, we focus on addressing such a complex problem efficiently with fewer I/Os, simpler CPU calculations (implementation-friendly), and less random I/O accesses (key-to-efficiency). Extensive experimental evaluations are performed on both synthetic and real graphs, and experimental results confirm that the proposed EP-DFS algorithm markedly outperforms existing algorithms." @default.
- W4220792012 created "2022-04-03" @default.
- W4220792012 creator A5049301997 @default.
- W4220792012 creator A5085267247 @default.
- W4220792012 date "2022-06-01" @default.
- W4220792012 modified "2023-10-08" @default.
- W4220792012 title "Efficient semi-external depth-first search" @default.
- W4220792012 cites W1963838724 @default.
- W4220792012 cites W1994727615 @default.
- W4220792012 cites W2024766516 @default.
- W4220792012 cites W2058846022 @default.
- W4220792012 cites W2080201763 @default.
- W4220792012 cites W2118382442 @default.
- W4220792012 cites W2258998514 @default.
- W4220792012 cites W2904368314 @default.
- W4220792012 cites W2964321435 @default.
- W4220792012 cites W3003536453 @default.
- W4220792012 cites W4206951872 @default.
- W4220792012 doi "https://doi.org/10.1016/j.ins.2022.03.078" @default.
- W4220792012 hasPublicationYear "2022" @default.
- W4220792012 type Work @default.
- W4220792012 citedByCount "4" @default.
- W4220792012 countsByYear W42207920122022 @default.
- W4220792012 countsByYear W42207920122023 @default.
- W4220792012 crossrefType "journal-article" @default.
- W4220792012 hasAuthorship W4220792012A5049301997 @default.
- W4220792012 hasAuthorship W4220792012A5085267247 @default.
- W4220792012 hasBestOaLocation W42207920122 @default.
- W4220792012 hasConcept C33923547 @default.
- W4220792012 hasConcept C41008148 @default.
- W4220792012 hasConceptScore W4220792012C33923547 @default.
- W4220792012 hasConceptScore W4220792012C41008148 @default.
- W4220792012 hasFunder F4320321001 @default.
- W4220792012 hasFunder F4320335777 @default.
- W4220792012 hasLocation W42207920121 @default.
- W4220792012 hasLocation W42207920122 @default.
- W4220792012 hasOpenAccess W4220792012 @default.
- W4220792012 hasPrimaryLocation W42207920121 @default.
- W4220792012 hasRelatedWork W1587224694 @default.
- W4220792012 hasRelatedWork W1979597421 @default.
- W4220792012 hasRelatedWork W2007980826 @default.
- W4220792012 hasRelatedWork W2061531152 @default.
- W4220792012 hasRelatedWork W2077600819 @default.
- W4220792012 hasRelatedWork W2748952813 @default.
- W4220792012 hasRelatedWork W2899084033 @default.
- W4220792012 hasRelatedWork W3002753104 @default.
- W4220792012 hasRelatedWork W4225152035 @default.
- W4220792012 hasRelatedWork W4245490552 @default.
- W4220792012 hasVolume "599" @default.
- W4220792012 isParatext "false" @default.
- W4220792012 isRetracted "false" @default.
- W4220792012 workType "article" @default.