Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220792972> ?p ?o ?g. }
- W4220792972 endingPage "100033" @default.
- W4220792972 startingPage "100033" @default.
- W4220792972 abstract "Demand forecasting is an important aspect in supply chain management that could contribute to enhancing the profit and increasing the efficiency by aligning the supply channels with anticipated demand. In the retail industry, customers and their needs are diverse making demand forecasting a challenging task. In this regard, this study aims at developing a three-step data-driven cluster-based demand forecasting approach for the retail industry. First, customers are segmented based on their recency, frequency, and monetary (RFM) characteristics. Customers with similar buying behaviors are recognized as a segment, creating an ordered relationship between transactions made by them. In the second step, time-series analysis techniques are used to forecast demand for each customer segment. Finally, Bayesian model averaging (BMA) is adopted to ensemble the forecasting results obtained from alternative time series techniques. The applicability of the proposed approach is presented through a comparative case study analysis with presented improvement in the accuracy of daily demand prediction." @default.
- W4220792972 created "2022-04-03" @default.
- W4220792972 creator A5025453863 @default.
- W4220792972 creator A5030968272 @default.
- W4220792972 creator A5037057933 @default.
- W4220792972 date "2022-06-01" @default.
- W4220792972 modified "2023-10-16" @default.
- W4220792972 title "Cluster-based demand forecasting using Bayesian model averaging: An ensemble learning approach" @default.
- W4220792972 cites W1978381836 @default.
- W4220792972 cites W1988277750 @default.
- W4220792972 cites W1991898226 @default.
- W4220792972 cites W2009349621 @default.
- W4220792972 cites W2030625232 @default.
- W4220792972 cites W2030731980 @default.
- W4220792972 cites W2057538889 @default.
- W4220792972 cites W2059804518 @default.
- W4220792972 cites W2059888405 @default.
- W4220792972 cites W2064873396 @default.
- W4220792972 cites W2070795314 @default.
- W4220792972 cites W2079560958 @default.
- W4220792972 cites W2087924048 @default.
- W4220792972 cites W2090804287 @default.
- W4220792972 cites W2099454382 @default.
- W4220792972 cites W2103226621 @default.
- W4220792972 cites W2125066969 @default.
- W4220792972 cites W2139401136 @default.
- W4220792972 cites W2302800291 @default.
- W4220792972 cites W2309497016 @default.
- W4220792972 cites W2334382349 @default.
- W4220792972 cites W2338758504 @default.
- W4220792972 cites W2488884246 @default.
- W4220792972 cites W2605018929 @default.
- W4220792972 cites W2606236711 @default.
- W4220792972 cites W2618416470 @default.
- W4220792972 cites W2728975105 @default.
- W4220792972 cites W2751060098 @default.
- W4220792972 cites W2751113347 @default.
- W4220792972 cites W2793600172 @default.
- W4220792972 cites W2794106216 @default.
- W4220792972 cites W2794778778 @default.
- W4220792972 cites W2894821558 @default.
- W4220792972 cites W2907251284 @default.
- W4220792972 cites W2913280151 @default.
- W4220792972 cites W2963594156 @default.
- W4220792972 cites W2970658101 @default.
- W4220792972 cites W2988286472 @default.
- W4220792972 cites W3015647460 @default.
- W4220792972 cites W3022851530 @default.
- W4220792972 cites W3044719873 @default.
- W4220792972 cites W3087213302 @default.
- W4220792972 cites W3087798270 @default.
- W4220792972 cites W3109582980 @default.
- W4220792972 doi "https://doi.org/10.1016/j.dajour.2022.100033" @default.
- W4220792972 hasPublicationYear "2022" @default.
- W4220792972 type Work @default.
- W4220792972 citedByCount "3" @default.
- W4220792972 countsByYear W42207929722022 @default.
- W4220792972 countsByYear W42207929722023 @default.
- W4220792972 crossrefType "journal-article" @default.
- W4220792972 hasAuthorship W4220792972A5025453863 @default.
- W4220792972 hasAuthorship W4220792972A5030968272 @default.
- W4220792972 hasAuthorship W4220792972A5037057933 @default.
- W4220792972 hasBestOaLocation W42207929721 @default.
- W4220792972 hasConcept C107673813 @default.
- W4220792972 hasConcept C108713360 @default.
- W4220792972 hasConcept C119857082 @default.
- W4220792972 hasConcept C119898033 @default.
- W4220792972 hasConcept C120330832 @default.
- W4220792972 hasConcept C127413603 @default.
- W4220792972 hasConcept C139719470 @default.
- W4220792972 hasConcept C144133560 @default.
- W4220792972 hasConcept C151406439 @default.
- W4220792972 hasConcept C154945302 @default.
- W4220792972 hasConcept C160234255 @default.
- W4220792972 hasConcept C162324750 @default.
- W4220792972 hasConcept C162853370 @default.
- W4220792972 hasConcept C164866538 @default.
- W4220792972 hasConcept C175444787 @default.
- W4220792972 hasConcept C179366874 @default.
- W4220792972 hasConcept C181622380 @default.
- W4220792972 hasConcept C193809577 @default.
- W4220792972 hasConcept C199360897 @default.
- W4220792972 hasConcept C32597650 @default.
- W4220792972 hasConcept C41008148 @default.
- W4220792972 hasConcept C42475967 @default.
- W4220792972 hasConcept C44104985 @default.
- W4220792972 hasConceptScore W4220792972C107673813 @default.
- W4220792972 hasConceptScore W4220792972C108713360 @default.
- W4220792972 hasConceptScore W4220792972C119857082 @default.
- W4220792972 hasConceptScore W4220792972C119898033 @default.
- W4220792972 hasConceptScore W4220792972C120330832 @default.
- W4220792972 hasConceptScore W4220792972C127413603 @default.
- W4220792972 hasConceptScore W4220792972C139719470 @default.
- W4220792972 hasConceptScore W4220792972C144133560 @default.
- W4220792972 hasConceptScore W4220792972C151406439 @default.
- W4220792972 hasConceptScore W4220792972C154945302 @default.
- W4220792972 hasConceptScore W4220792972C160234255 @default.
- W4220792972 hasConceptScore W4220792972C162324750 @default.