Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220793058> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4220793058 abstract "<p>Where landslide hazard mitigation is impossible, Early Warning Systems are a valuable alternative to reduce landslide risk. Nowcasting and Early Warning Systems for landslide hazard mitigation have been implemented mostly at local scale, as such systems are often difficult to implement at regional scale or in remote areas due to dependency on fieldwork as well as local sensors. In recent years, various studies have demonstrated the effective application of machine learning for deformation forecasting of slow-moving, non-catastrophic, deep-seated landslides. Machine learning, combined with satellite remote sensing products offers new opportunities for both local and regional monitoring of deep-seated landslides and associated processes.</p><p>We tested the opportunities for machine learning on a multi-sensor monitored Austrian landslide. Our goal was to link conditions on the slope to the deformation pattern, to nowcast the deformation accelerations four days ahead of time. The in-situ sensors enabled us to test various model configurations based on combinations of local, remote sensing and retrospective analysis data sources. Our early results with shallow neural networks provide important context for future attempts. The complexities encountered were twofold: the machine learning model is poorly constrained due to the limited time span of five years of observations, and standard error metrics, like mean squared error, are unsuitable for model optimizations for landslide nowcasting.</p><p>First, even in Europe, with a six-day repeat cycle for Sentinel-1, there will be less than 500 InSAR deformation estimates from the start of the mission early 2015 to the end of 2022. As as consequence, there are only a few uniquely identifiable accelerations at the slope, and their timing is poorly defined within the six days between acquisitions. Therefore, the amount of training data is limited compared to the potentially large number of variables in more powerful machine learning models. On the Austrian slope we could rely on local, daily deformation measurements, to reveal sub-weekly minor accelerations, and to simulate potential, future, data availability.</p><p>Second, training of machine learning models is typically aimed at minimizing the average error. However, the average is a poor descriptor of the landslide accelerations that are deviations from the average, long-term behaviour. An alternative error metric was developed, that is more resiliant to slight timing errors.</p><p>Therefore, landslide deformation nowcasting is not a straightforward application of machine learning and there is a long road ahead for the large scale implementation of machine learning in landslide nowcasting and Early Warning Systems. Next step will be to evaluate our model on a landslide with a stronger deformation signal and more rapid onset of acceleration. We expect that these additional experiments will strengthen our preliminary conclusion that a successful nowcasting system requires simple, robust models and frequent, high quality and event rich data to train the system.</p>" @default.
- W4220793058 created "2022-04-03" @default.
- W4220793058 creator A5056146313 @default.
- W4220793058 creator A5059928575 @default.
- W4220793058 creator A5082565717 @default.
- W4220793058 date "2022-03-27" @default.
- W4220793058 modified "2023-09-23" @default.
- W4220793058 title "Lessons learned from deformation nowcasting at a deep-seated landslide" @default.
- W4220793058 doi "https://doi.org/10.5194/egusphere-egu22-3913" @default.
- W4220793058 hasPublicationYear "2022" @default.
- W4220793058 type Work @default.
- W4220793058 citedByCount "0" @default.
- W4220793058 crossrefType "posted-content" @default.
- W4220793058 hasAuthorship W4220793058A5056146313 @default.
- W4220793058 hasAuthorship W4220793058A5059928575 @default.
- W4220793058 hasAuthorship W4220793058A5082565717 @default.
- W4220793058 hasConcept C119857082 @default.
- W4220793058 hasConcept C127313418 @default.
- W4220793058 hasConcept C151730666 @default.
- W4220793058 hasConcept C153294291 @default.
- W4220793058 hasConcept C154945302 @default.
- W4220793058 hasConcept C165205528 @default.
- W4220793058 hasConcept C178790620 @default.
- W4220793058 hasConcept C185592680 @default.
- W4220793058 hasConcept C186295008 @default.
- W4220793058 hasConcept C205649164 @default.
- W4220793058 hasConcept C2778755073 @default.
- W4220793058 hasConcept C2779296788 @default.
- W4220793058 hasConcept C2779343474 @default.
- W4220793058 hasConcept C2781013037 @default.
- W4220793058 hasConcept C29825287 @default.
- W4220793058 hasConcept C41008148 @default.
- W4220793058 hasConcept C49261128 @default.
- W4220793058 hasConcept C58640448 @default.
- W4220793058 hasConcept C62649853 @default.
- W4220793058 hasConcept C76155785 @default.
- W4220793058 hasConceptScore W4220793058C119857082 @default.
- W4220793058 hasConceptScore W4220793058C127313418 @default.
- W4220793058 hasConceptScore W4220793058C151730666 @default.
- W4220793058 hasConceptScore W4220793058C153294291 @default.
- W4220793058 hasConceptScore W4220793058C154945302 @default.
- W4220793058 hasConceptScore W4220793058C165205528 @default.
- W4220793058 hasConceptScore W4220793058C178790620 @default.
- W4220793058 hasConceptScore W4220793058C185592680 @default.
- W4220793058 hasConceptScore W4220793058C186295008 @default.
- W4220793058 hasConceptScore W4220793058C205649164 @default.
- W4220793058 hasConceptScore W4220793058C2778755073 @default.
- W4220793058 hasConceptScore W4220793058C2779296788 @default.
- W4220793058 hasConceptScore W4220793058C2779343474 @default.
- W4220793058 hasConceptScore W4220793058C2781013037 @default.
- W4220793058 hasConceptScore W4220793058C29825287 @default.
- W4220793058 hasConceptScore W4220793058C41008148 @default.
- W4220793058 hasConceptScore W4220793058C49261128 @default.
- W4220793058 hasConceptScore W4220793058C58640448 @default.
- W4220793058 hasConceptScore W4220793058C62649853 @default.
- W4220793058 hasConceptScore W4220793058C76155785 @default.
- W4220793058 hasLocation W42207930581 @default.
- W4220793058 hasOpenAccess W4220793058 @default.
- W4220793058 hasPrimaryLocation W42207930581 @default.
- W4220793058 hasRelatedWork W2072357889 @default.
- W4220793058 hasRelatedWork W2367365928 @default.
- W4220793058 hasRelatedWork W2803414070 @default.
- W4220793058 hasRelatedWork W3085808050 @default.
- W4220793058 hasRelatedWork W3113818897 @default.
- W4220793058 hasRelatedWork W3120525994 @default.
- W4220793058 hasRelatedWork W4220793058 @default.
- W4220793058 hasRelatedWork W4220970719 @default.
- W4220793058 hasRelatedWork W4284700604 @default.
- W4220793058 hasRelatedWork W2461122455 @default.
- W4220793058 isParatext "false" @default.
- W4220793058 isRetracted "false" @default.
- W4220793058 workType "article" @default.