Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220793708> ?p ?o ?g. }
- W4220793708 endingPage "2124" @default.
- W4220793708 startingPage "2106" @default.
- W4220793708 abstract "Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the approaches that do exist impose restrictive assumptions on the problem structure. We present an adaptive bundle method for nonlinear and nonconvex robust optimization problems with a suitable notion of inexactness in function values and subgradients. As the worst-case evaluation requires a global solution to the adversarial problem, it is a main challenge in a general nonconvex nonlinear setting. Moreover, computing elements of an ε-perturbation of the Clarke subdifferential in the [Formula: see text]-norm sense is in general prohibitive for this class of problems. In this article, instead of developing an entirely new bundle concept, we demonstrate how existing approaches, such as Noll’s bundle method for nonconvex minimization with inexact information [Noll D (2013) Bundle method for non-convex minimization with inexact subgradients and function values. Computational and Analytical Mathematics, Springer Proceedings Mathematics, vol. 50 (Springer, New York), 555–592.] can be modified to be able to cope with this situation. Extending the nonconvex bundle concept to the case of robust optimization in this way, we prove convergence under two assumptions: first, that the objective function is lower C 1 and, second, that approximately optimal solutions to the adversarial maximization problem are available. The proposed method is, hence, applicable to a rather general setting of nonlinear robust optimization problems. In particular, we do not rely on a specific structure of the adversary’s constraints. The considered class of robust optimization problems covers the case that the worst-case adversary only needs to be evaluated up to a certain precision. One possibility to evaluate the worst case with the desired degree of precision is the use of techniques from mixed-integer linear programming. We investigate the procedure on some analytic examples. As applications, we study the gas transport problem under uncertainties in demand and in physical parameters that affect pressure losses in the pipes. Computational results for examples in large realistic gas network instances demonstrate the applicability as well as the efficiency of the method. Summary of Contribution: Nonlinear robust optimization is a relevant field of research as real-world optimization problems usually suffer from not precisely known parameters, for example, physical parameters that cannot be measured exactly. Currently, there are few theoretical or practical approaches available for general nonlinear robust optimization. Moreover, the methods that do exist impose restrictive assumptions on the problem structure. Writing nonlinear robust optimization tasks in minimax form, in principle, bundle methods can be used to solve the resulting nonsmooth problem. However, there are a number of difficulties to overcome. First, the inner adversarial problem needs to be solved to global optimality, which is a major challenge in a general nonconvex nonlinear setting. In order to cope with this, an adaptive solution approach, which allows for inexactness, is required. A second challenge is then that the computation of elements from an ε-neighborhood of the Clarke subdifferential is, in general, prohibitive. We show how an existing bundle concept by D. Noll for nonconvex problems with inexactness in function values and subgradients can be adapted to this situation. The resulting method only requires availability of approximate worst-case evaluations, and in particular, it does not rely on a specific structure of the adversarial constraints. To evaluate the worst case with the desired degree of precision, one possibility is the use of techniques from mixed-integer linear programming. In the course of the paper, we discuss convergence properties of the resulting method and demonstrate its efficiency by means of robust gas transport problems." @default.
- W4220793708 created "2022-04-03" @default.
- W4220793708 creator A5006613126 @default.
- W4220793708 creator A5013459854 @default.
- W4220793708 creator A5085926325 @default.
- W4220793708 date "2022-07-01" @default.
- W4220793708 modified "2023-09-27" @default.
- W4220793708 title "Adaptive Bundle Methods for Nonlinear Robust Optimization" @default.
- W4220793708 cites W1551360398 @default.
- W4220793708 cites W1969341787 @default.
- W4220793708 cites W1970677796 @default.
- W4220793708 cites W1980468836 @default.
- W4220793708 cites W1988832226 @default.
- W4220793708 cites W1992896291 @default.
- W4220793708 cites W2000985550 @default.
- W4220793708 cites W2005022214 @default.
- W4220793708 cites W2021527565 @default.
- W4220793708 cites W2022150446 @default.
- W4220793708 cites W2026994686 @default.
- W4220793708 cites W2029383729 @default.
- W4220793708 cites W2031244688 @default.
- W4220793708 cites W2039110678 @default.
- W4220793708 cites W2041928877 @default.
- W4220793708 cites W2042816232 @default.
- W4220793708 cites W2045611427 @default.
- W4220793708 cites W2053426508 @default.
- W4220793708 cites W2065385799 @default.
- W4220793708 cites W2065997029 @default.
- W4220793708 cites W2070773583 @default.
- W4220793708 cites W2077230226 @default.
- W4220793708 cites W2081038760 @default.
- W4220793708 cites W2089472568 @default.
- W4220793708 cites W2091992858 @default.
- W4220793708 cites W2094094274 @default.
- W4220793708 cites W2110964083 @default.
- W4220793708 cites W2115927679 @default.
- W4220793708 cites W2172228337 @default.
- W4220793708 cites W2201384637 @default.
- W4220793708 cites W2210434322 @default.
- W4220793708 cites W2403192619 @default.
- W4220793708 cites W2529781235 @default.
- W4220793708 cites W256264460 @default.
- W4220793708 cites W2754366921 @default.
- W4220793708 cites W2898221677 @default.
- W4220793708 cites W2910338927 @default.
- W4220793708 cites W2973491413 @default.
- W4220793708 cites W3011455298 @default.
- W4220793708 cites W3042360488 @default.
- W4220793708 cites W3101679863 @default.
- W4220793708 cites W3125338181 @default.
- W4220793708 cites W356322785 @default.
- W4220793708 cites W95484040 @default.
- W4220793708 doi "https://doi.org/10.1287/ijoc.2021.1122" @default.
- W4220793708 hasPublicationYear "2022" @default.
- W4220793708 type Work @default.
- W4220793708 citedByCount "2" @default.
- W4220793708 countsByYear W42207937082022 @default.
- W4220793708 countsByYear W42207937082023 @default.
- W4220793708 crossrefType "journal-article" @default.
- W4220793708 hasAuthorship W4220793708A5006613126 @default.
- W4220793708 hasAuthorship W4220793708A5013459854 @default.
- W4220793708 hasAuthorship W4220793708A5085926325 @default.
- W4220793708 hasConcept C104317684 @default.
- W4220793708 hasConcept C115527620 @default.
- W4220793708 hasConcept C121332964 @default.
- W4220793708 hasConcept C126255220 @default.
- W4220793708 hasConcept C137836250 @default.
- W4220793708 hasConcept C147764199 @default.
- W4220793708 hasConcept C158622935 @default.
- W4220793708 hasConcept C159985019 @default.
- W4220793708 hasConcept C17744445 @default.
- W4220793708 hasConcept C185592680 @default.
- W4220793708 hasConcept C191795146 @default.
- W4220793708 hasConcept C192562407 @default.
- W4220793708 hasConcept C193254401 @default.
- W4220793708 hasConcept C199539241 @default.
- W4220793708 hasConcept C2776330181 @default.
- W4220793708 hasConcept C2778134712 @default.
- W4220793708 hasConcept C33923547 @default.
- W4220793708 hasConcept C41008148 @default.
- W4220793708 hasConcept C55493867 @default.
- W4220793708 hasConcept C62520636 @default.
- W4220793708 hasConcept C63479239 @default.
- W4220793708 hasConceptScore W4220793708C104317684 @default.
- W4220793708 hasConceptScore W4220793708C115527620 @default.
- W4220793708 hasConceptScore W4220793708C121332964 @default.
- W4220793708 hasConceptScore W4220793708C126255220 @default.
- W4220793708 hasConceptScore W4220793708C137836250 @default.
- W4220793708 hasConceptScore W4220793708C147764199 @default.
- W4220793708 hasConceptScore W4220793708C158622935 @default.
- W4220793708 hasConceptScore W4220793708C159985019 @default.
- W4220793708 hasConceptScore W4220793708C17744445 @default.
- W4220793708 hasConceptScore W4220793708C185592680 @default.
- W4220793708 hasConceptScore W4220793708C191795146 @default.
- W4220793708 hasConceptScore W4220793708C192562407 @default.
- W4220793708 hasConceptScore W4220793708C193254401 @default.
- W4220793708 hasConceptScore W4220793708C199539241 @default.
- W4220793708 hasConceptScore W4220793708C2776330181 @default.