Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220793849> ?p ?o ?g. }
- W4220793849 endingPage "1339" @default.
- W4220793849 startingPage "1339" @default.
- W4220793849 abstract "Sea surface temperature (SST) has important practical value in ocean related fields. Numerical prediction is a common method for forecasting SST at present. However, the forecast results produced by the numerical forecast models often deviate from the actual observation data, so it is necessary to correct the bias of the numerical forecast products. In this paper, an SST correction approach based on the Convolutional Long Short-Term Memory (ConvLSTM) network with multiple attention mechanisms is proposed, which considers the spatio-temporal relations in SST data. The proposed model is appropriate for correcting SST numerical forecast products by using satellite remote sensing data. The approach is tested in the region of the South China Sea and reduces the root mean squared error (RMSE) to 0.35 °C. Experimental results reveal that the proposed approach is significantly better than existing models, including traditional statistical methods, machine learning based methods, and deep learning methods." @default.
- W4220793849 created "2022-04-03" @default.
- W4220793849 creator A5000638314 @default.
- W4220793849 creator A5014963018 @default.
- W4220793849 creator A5024920367 @default.
- W4220793849 creator A5030535297 @default.
- W4220793849 creator A5044936528 @default.
- W4220793849 creator A5052097137 @default.
- W4220793849 creator A5066899334 @default.
- W4220793849 date "2022-03-10" @default.
- W4220793849 modified "2023-10-05" @default.
- W4220793849 title "A Hybrid Deep Learning Model for the Bias Correction of SST Numerical Forecast Products Using Satellite Data" @default.
- W4220793849 cites W1970708661 @default.
- W4220793849 cites W1973178306 @default.
- W4220793849 cites W1982509369 @default.
- W4220793849 cites W1983364832 @default.
- W4220793849 cites W1993085075 @default.
- W4220793849 cites W2006726025 @default.
- W4220793849 cites W2009687803 @default.
- W4220793849 cites W2021510303 @default.
- W4220793849 cites W2028360973 @default.
- W4220793849 cites W2032202258 @default.
- W4220793849 cites W2043550022 @default.
- W4220793849 cites W2062291665 @default.
- W4220793849 cites W2065435840 @default.
- W4220793849 cites W2065851376 @default.
- W4220793849 cites W2069086849 @default.
- W4220793849 cites W2091546836 @default.
- W4220793849 cites W2131070146 @default.
- W4220793849 cites W2175297798 @default.
- W4220793849 cites W2342588342 @default.
- W4220793849 cites W2747688618 @default.
- W4220793849 cites W2763740452 @default.
- W4220793849 cites W2778580105 @default.
- W4220793849 cites W2803408063 @default.
- W4220793849 cites W2890689334 @default.
- W4220793849 cites W2914768369 @default.
- W4220793849 cites W2944681516 @default.
- W4220793849 cites W2945471725 @default.
- W4220793849 cites W2962757591 @default.
- W4220793849 cites W2995649053 @default.
- W4220793849 cites W3024360037 @default.
- W4220793849 cites W3037369538 @default.
- W4220793849 cites W3042493930 @default.
- W4220793849 cites W3139566959 @default.
- W4220793849 cites W3147233169 @default.
- W4220793849 cites W3167182280 @default.
- W4220793849 doi "https://doi.org/10.3390/rs14061339" @default.
- W4220793849 hasPublicationYear "2022" @default.
- W4220793849 type Work @default.
- W4220793849 citedByCount "5" @default.
- W4220793849 countsByYear W42207938492022 @default.
- W4220793849 countsByYear W42207938492023 @default.
- W4220793849 crossrefType "journal-article" @default.
- W4220793849 hasAuthorship W4220793849A5000638314 @default.
- W4220793849 hasAuthorship W4220793849A5014963018 @default.
- W4220793849 hasAuthorship W4220793849A5024920367 @default.
- W4220793849 hasAuthorship W4220793849A5030535297 @default.
- W4220793849 hasAuthorship W4220793849A5044936528 @default.
- W4220793849 hasAuthorship W4220793849A5052097137 @default.
- W4220793849 hasAuthorship W4220793849A5066899334 @default.
- W4220793849 hasBestOaLocation W42207938491 @default.
- W4220793849 hasConcept C105795698 @default.
- W4220793849 hasConcept C108583219 @default.
- W4220793849 hasConcept C121332964 @default.
- W4220793849 hasConcept C127313418 @default.
- W4220793849 hasConcept C127413603 @default.
- W4220793849 hasConcept C134097258 @default.
- W4220793849 hasConcept C139945424 @default.
- W4220793849 hasConcept C146978453 @default.
- W4220793849 hasConcept C147947694 @default.
- W4220793849 hasConcept C153294291 @default.
- W4220793849 hasConcept C154945302 @default.
- W4220793849 hasConcept C170061395 @default.
- W4220793849 hasConcept C19269812 @default.
- W4220793849 hasConcept C33923547 @default.
- W4220793849 hasConcept C41008148 @default.
- W4220793849 hasConcept C49204034 @default.
- W4220793849 hasConcept C50644808 @default.
- W4220793849 hasConceptScore W4220793849C105795698 @default.
- W4220793849 hasConceptScore W4220793849C108583219 @default.
- W4220793849 hasConceptScore W4220793849C121332964 @default.
- W4220793849 hasConceptScore W4220793849C127313418 @default.
- W4220793849 hasConceptScore W4220793849C127413603 @default.
- W4220793849 hasConceptScore W4220793849C134097258 @default.
- W4220793849 hasConceptScore W4220793849C139945424 @default.
- W4220793849 hasConceptScore W4220793849C146978453 @default.
- W4220793849 hasConceptScore W4220793849C147947694 @default.
- W4220793849 hasConceptScore W4220793849C153294291 @default.
- W4220793849 hasConceptScore W4220793849C154945302 @default.
- W4220793849 hasConceptScore W4220793849C170061395 @default.
- W4220793849 hasConceptScore W4220793849C19269812 @default.
- W4220793849 hasConceptScore W4220793849C33923547 @default.
- W4220793849 hasConceptScore W4220793849C41008148 @default.
- W4220793849 hasConceptScore W4220793849C49204034 @default.
- W4220793849 hasConceptScore W4220793849C50644808 @default.
- W4220793849 hasFunder F4320321001 @default.
- W4220793849 hasFunder F4320335777 @default.