Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220794413> ?p ?o ?g. }
- W4220794413 endingPage "1806" @default.
- W4220794413 startingPage "1806" @default.
- W4220794413 abstract "Coffee, one of the most popular beverages in the world, attracts consumers by its rich aroma and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular coffee due to health concerns. There are some main decaffeination methods commonly used by commercial coffee producers for decades. However, a certain amount of the aroma precursors can be removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand the difference between regular and decaffeinated coffee from the volatile composition point of view, headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles, decaffeinated coffee was significantly separated from regular coffee by principal component analysis (PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to select the most important features that could enable a distinct classification between the two coffee types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived compounds were a strong marker for the regular coffee group whereas furan-derived compounds were a strong marker for the decaffeinated coffee samples." @default.
- W4220794413 created "2022-04-03" @default.
- W4220794413 creator A5002905367 @default.
- W4220794413 creator A5041292155 @default.
- W4220794413 creator A5080991947 @default.
- W4220794413 creator A5083152430 @default.
- W4220794413 creator A5084759946 @default.
- W4220794413 date "2022-03-10" @default.
- W4220794413 modified "2023-10-01" @default.
- W4220794413 title "Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-TOFMS, Chemometrics, and Machine Learning" @default.
- W4220794413 cites W1429731930 @default.
- W4220794413 cites W1985737962 @default.
- W4220794413 cites W1986029158 @default.
- W4220794413 cites W2049277670 @default.
- W4220794413 cites W2053329037 @default.
- W4220794413 cites W2083637865 @default.
- W4220794413 cites W2084421223 @default.
- W4220794413 cites W2091374137 @default.
- W4220794413 cites W2094604009 @default.
- W4220794413 cites W2113373225 @default.
- W4220794413 cites W2117128793 @default.
- W4220794413 cites W2139086914 @default.
- W4220794413 cites W2157174244 @default.
- W4220794413 cites W2293083063 @default.
- W4220794413 cites W2314717095 @default.
- W4220794413 cites W2542623226 @default.
- W4220794413 cites W2593994206 @default.
- W4220794413 cites W2794387797 @default.
- W4220794413 cites W2888748387 @default.
- W4220794413 cites W2911460377 @default.
- W4220794413 cites W2911964244 @default.
- W4220794413 cites W2914149393 @default.
- W4220794413 cites W2930379364 @default.
- W4220794413 cites W2930530374 @default.
- W4220794413 cites W2938901376 @default.
- W4220794413 cites W2965218403 @default.
- W4220794413 cites W3004121624 @default.
- W4220794413 cites W3042012809 @default.
- W4220794413 cites W3124755710 @default.
- W4220794413 cites W3175946265 @default.
- W4220794413 cites W3206593189 @default.
- W4220794413 cites W3209386356 @default.
- W4220794413 doi "https://doi.org/10.3390/molecules27061806" @default.
- W4220794413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35335174" @default.
- W4220794413 hasPublicationYear "2022" @default.
- W4220794413 type Work @default.
- W4220794413 citedByCount "18" @default.
- W4220794413 countsByYear W42207944132022 @default.
- W4220794413 countsByYear W42207944132023 @default.
- W4220794413 crossrefType "journal-article" @default.
- W4220794413 hasAuthorship W4220794413A5002905367 @default.
- W4220794413 hasAuthorship W4220794413A5041292155 @default.
- W4220794413 hasAuthorship W4220794413A5080991947 @default.
- W4220794413 hasAuthorship W4220794413A5083152430 @default.
- W4220794413 hasAuthorship W4220794413A5084759946 @default.
- W4220794413 hasBestOaLocation W42207944131 @default.
- W4220794413 hasConcept C105795698 @default.
- W4220794413 hasConcept C118552586 @default.
- W4220794413 hasConcept C123460561 @default.
- W4220794413 hasConcept C140327455 @default.
- W4220794413 hasConcept C147789679 @default.
- W4220794413 hasConcept C151304367 @default.
- W4220794413 hasConcept C154945302 @default.
- W4220794413 hasConcept C15744967 @default.
- W4220794413 hasConcept C162356407 @default.
- W4220794413 hasConcept C185592680 @default.
- W4220794413 hasConcept C205345274 @default.
- W4220794413 hasConcept C22354355 @default.
- W4220794413 hasConcept C2778500429 @default.
- W4220794413 hasConcept C2778533135 @default.
- W4220794413 hasConcept C2780490891 @default.
- W4220794413 hasConcept C2780563676 @default.
- W4220794413 hasConcept C2780719635 @default.
- W4220794413 hasConcept C2993298077 @default.
- W4220794413 hasConcept C31903555 @default.
- W4220794413 hasConcept C33923547 @default.
- W4220794413 hasConcept C41008148 @default.
- W4220794413 hasConcept C43617362 @default.
- W4220794413 hasConcept C59822182 @default.
- W4220794413 hasConcept C69738355 @default.
- W4220794413 hasConcept C86803240 @default.
- W4220794413 hasConceptScore W4220794413C105795698 @default.
- W4220794413 hasConceptScore W4220794413C118552586 @default.
- W4220794413 hasConceptScore W4220794413C123460561 @default.
- W4220794413 hasConceptScore W4220794413C140327455 @default.
- W4220794413 hasConceptScore W4220794413C147789679 @default.
- W4220794413 hasConceptScore W4220794413C151304367 @default.
- W4220794413 hasConceptScore W4220794413C154945302 @default.
- W4220794413 hasConceptScore W4220794413C15744967 @default.
- W4220794413 hasConceptScore W4220794413C162356407 @default.
- W4220794413 hasConceptScore W4220794413C185592680 @default.
- W4220794413 hasConceptScore W4220794413C205345274 @default.
- W4220794413 hasConceptScore W4220794413C22354355 @default.
- W4220794413 hasConceptScore W4220794413C2778500429 @default.
- W4220794413 hasConceptScore W4220794413C2778533135 @default.
- W4220794413 hasConceptScore W4220794413C2780490891 @default.
- W4220794413 hasConceptScore W4220794413C2780563676 @default.
- W4220794413 hasConceptScore W4220794413C2780719635 @default.