Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220794529> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4220794529 endingPage "1117" @default.
- W4220794529 startingPage "1117" @default.
- W4220794529 abstract "In this work, we consider robotic systems for which the mass tensor is identified to be the metric in a Riemannian manifold. Cost functional invariance is achieved by constructing it with the identified metric. Optimal control evolution is revealed in the form of a covariant second-order ordinary differential equation featuring the Riemann curvature tensor that constrains the control variable. In Pontryagin’s framework of the maximum principle, the cost functional has a direct impact on the system Hamiltonian. It is regarded as the performance index, and optimal control variables are affected by this fundamental choice. In the present context of cost functional invariance, we show that the adjoint variables are the first-order representation of the second-order control variable evolution equation. It is also shown that adding supplementary invariant terms to the cost functional does not modify the basic structure of the optimal control covariant evolution equation. Numerical trials show that the proposed invariant cost functionals, as compared to their non-invariant versions, lead to lower joint power consumption and narrower joint angular amplitudes during motion. With our formulation, the differential equations solver gains stability and operates dramatically faster when compared to examples where cost functional invariance is not considered." @default.
- W4220794529 created "2022-04-03" @default.
- W4220794529 creator A5063497084 @default.
- W4220794529 creator A5065071318 @default.
- W4220794529 creator A5080503349 @default.
- W4220794529 date "2022-03-30" @default.
- W4220794529 modified "2023-10-16" @default.
- W4220794529 title "Riemannian Formulation of Pontryagin’s Maximum Principle for the Optimal Control of Robotic Manipulators" @default.
- W4220794529 cites W1500275774 @default.
- W4220794529 cites W1855982673 @default.
- W4220794529 cites W1974968975 @default.
- W4220794529 cites W1988252227 @default.
- W4220794529 cites W2006028399 @default.
- W4220794529 cites W2016898059 @default.
- W4220794529 cites W2021300704 @default.
- W4220794529 cites W2062851837 @default.
- W4220794529 cites W2096444015 @default.
- W4220794529 cites W2098815764 @default.
- W4220794529 cites W2103546845 @default.
- W4220794529 cites W2105218843 @default.
- W4220794529 cites W2136621952 @default.
- W4220794529 cites W2139599499 @default.
- W4220794529 cites W2162488100 @default.
- W4220794529 cites W2221321873 @default.
- W4220794529 cites W2397013361 @default.
- W4220794529 cites W2610806101 @default.
- W4220794529 cites W2611118787 @default.
- W4220794529 cites W2765945009 @default.
- W4220794529 cites W2767578104 @default.
- W4220794529 cites W2921430369 @default.
- W4220794529 cites W2973609966 @default.
- W4220794529 cites W3029756146 @default.
- W4220794529 cites W3103529233 @default.
- W4220794529 cites W3112148683 @default.
- W4220794529 cites W3135181478 @default.
- W4220794529 cites W3185752181 @default.
- W4220794529 cites W4200279207 @default.
- W4220794529 cites W4205355996 @default.
- W4220794529 cites W4205362845 @default.
- W4220794529 cites W4240172577 @default.
- W4220794529 cites W4242811155 @default.
- W4220794529 cites W4299621774 @default.
- W4220794529 cites W562575633 @default.
- W4220794529 doi "https://doi.org/10.3390/math10071117" @default.
- W4220794529 hasPublicationYear "2022" @default.
- W4220794529 type Work @default.
- W4220794529 citedByCount "1" @default.
- W4220794529 countsByYear W42207945292022 @default.
- W4220794529 crossrefType "journal-article" @default.
- W4220794529 hasAuthorship W4220794529A5063497084 @default.
- W4220794529 hasAuthorship W4220794529A5065071318 @default.
- W4220794529 hasAuthorship W4220794529A5080503349 @default.
- W4220794529 hasBestOaLocation W42207945291 @default.
- W4220794529 hasConcept C126255220 @default.
- W4220794529 hasConcept C130787639 @default.
- W4220794529 hasConcept C134306372 @default.
- W4220794529 hasConcept C190470478 @default.
- W4220794529 hasConcept C28826006 @default.
- W4220794529 hasConcept C33923547 @default.
- W4220794529 hasConcept C37914503 @default.
- W4220794529 hasConcept C91575142 @default.
- W4220794529 hasConceptScore W4220794529C126255220 @default.
- W4220794529 hasConceptScore W4220794529C130787639 @default.
- W4220794529 hasConceptScore W4220794529C134306372 @default.
- W4220794529 hasConceptScore W4220794529C190470478 @default.
- W4220794529 hasConceptScore W4220794529C28826006 @default.
- W4220794529 hasConceptScore W4220794529C33923547 @default.
- W4220794529 hasConceptScore W4220794529C37914503 @default.
- W4220794529 hasConceptScore W4220794529C91575142 @default.
- W4220794529 hasFunder F4320321739 @default.
- W4220794529 hasIssue "7" @default.
- W4220794529 hasLocation W42207945291 @default.
- W4220794529 hasLocation W42207945292 @default.
- W4220794529 hasLocation W42207945293 @default.
- W4220794529 hasLocation W42207945294 @default.
- W4220794529 hasOpenAccess W4220794529 @default.
- W4220794529 hasPrimaryLocation W42207945291 @default.
- W4220794529 hasRelatedWork W1520410026 @default.
- W4220794529 hasRelatedWork W1640151394 @default.
- W4220794529 hasRelatedWork W1901119619 @default.
- W4220794529 hasRelatedWork W1967384683 @default.
- W4220794529 hasRelatedWork W1971756480 @default.
- W4220794529 hasRelatedWork W1989531755 @default.
- W4220794529 hasRelatedWork W2075972694 @default.
- W4220794529 hasRelatedWork W2962746246 @default.
- W4220794529 hasRelatedWork W4238581249 @default.
- W4220794529 hasRelatedWork W1892002403 @default.
- W4220794529 hasVolume "10" @default.
- W4220794529 isParatext "false" @default.
- W4220794529 isRetracted "false" @default.
- W4220794529 workType "article" @default.