Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220794621> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4220794621 endingPage "16" @default.
- W4220794621 startingPage "1" @default.
- W4220794621 abstract "In this research, the authors were interested in an efficiency comparison study of new adjusted nonparametric and parametric statistics interval estimation methods in the simple linear regression model. The independent variable and the error came from normal, scale-contaminated normal, and gamma distributions. Six point estimations were performed, for example, least squares, Bayesian, Jack knife, Theil, optimum-type Theil, and new adjusted Theil–Sen and Siegel methods in the simple linear regression model with 1,000 iterations. The criteria used to consider in this study were the coefficient of the confidence interval and the average width of the confidence interval used to compare and determine the optimal effectiveness for six interval estimations of the simple linear regression model. In the interval estimation for normal and scale-contaminated normal distributions of <math xmlns=http://www.w3.org/1998/Math/MathML id=M1><msub><mrow><mi>β</mi></mrow><mrow><mn>0</mn></mrow></msub></math> , the least squares method had the narrowest average width of confidence interval. For the interval estimation of <math xmlns=http://www.w3.org/1998/Math/MathML id=M2><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub></math> , the Bayesian method had the narrowest average width of confidence interval in a small variance of 1, followed by the same of optimum-type Theil and new adjusted Theil–Sen and Siegel methods, and Theil method, respectively. In the interval estimation for gamma distribution of <math xmlns=http://www.w3.org/1998/Math/MathML id=M3><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub></math> , the Bayesian method had the narrowest average width of confidence interval, followed by optimum-type Theil, new adjusted Theil–Sen and Siegel, and Theil methods, respectively. The optimum-type Theil method was good for medium sample size, while Theil and new adjusted Theil–Sen and Siegel methods were good for small and large sample sizes. Therefore, new adjusted Theil–Sen and Siegel method can be used in many situations and can be used in place of optimum-type Theil and Theil methods for nonparametric statistics interval estimation." @default.
- W4220794621 created "2022-04-03" @default.
- W4220794621 creator A5052442802 @default.
- W4220794621 creator A5063589644 @default.
- W4220794621 date "2022-03-30" @default.
- W4220794621 modified "2023-10-14" @default.
- W4220794621 title "Efficiency Comparison of New Adjusted Nonparametric and Parametric Statistics Interval Estimation Methods in the Simple Linear Regression Model" @default.
- W4220794621 cites W2144643813 @default.
- W4220794621 cites W2480977715 @default.
- W4220794621 cites W2739855606 @default.
- W4220794621 cites W3106889297 @default.
- W4220794621 doi "https://doi.org/10.1155/2022/2744723" @default.
- W4220794621 hasPublicationYear "2022" @default.
- W4220794621 type Work @default.
- W4220794621 citedByCount "0" @default.
- W4220794621 crossrefType "journal-article" @default.
- W4220794621 hasAuthorship W4220794621A5052442802 @default.
- W4220794621 hasAuthorship W4220794621A5063589644 @default.
- W4220794621 hasBestOaLocation W42207946211 @default.
- W4220794621 hasConcept C102366305 @default.
- W4220794621 hasConcept C103402496 @default.
- W4220794621 hasConcept C105795698 @default.
- W4220794621 hasConcept C121117317 @default.
- W4220794621 hasConcept C149769383 @default.
- W4220794621 hasConcept C205167067 @default.
- W4220794621 hasConcept C2776292839 @default.
- W4220794621 hasConcept C33923547 @default.
- W4220794621 hasConcept C42468098 @default.
- W4220794621 hasConcept C44249647 @default.
- W4220794621 hasConcept C48921125 @default.
- W4220794621 hasConcept C66520545 @default.
- W4220794621 hasConcept C74127309 @default.
- W4220794621 hasConceptScore W4220794621C102366305 @default.
- W4220794621 hasConceptScore W4220794621C103402496 @default.
- W4220794621 hasConceptScore W4220794621C105795698 @default.
- W4220794621 hasConceptScore W4220794621C121117317 @default.
- W4220794621 hasConceptScore W4220794621C149769383 @default.
- W4220794621 hasConceptScore W4220794621C205167067 @default.
- W4220794621 hasConceptScore W4220794621C2776292839 @default.
- W4220794621 hasConceptScore W4220794621C33923547 @default.
- W4220794621 hasConceptScore W4220794621C42468098 @default.
- W4220794621 hasConceptScore W4220794621C44249647 @default.
- W4220794621 hasConceptScore W4220794621C48921125 @default.
- W4220794621 hasConceptScore W4220794621C66520545 @default.
- W4220794621 hasConceptScore W4220794621C74127309 @default.
- W4220794621 hasLocation W42207946211 @default.
- W4220794621 hasOpenAccess W4220794621 @default.
- W4220794621 hasPrimaryLocation W42207946211 @default.
- W4220794621 hasRelatedWork W1965072791 @default.
- W4220794621 hasRelatedWork W2028818548 @default.
- W4220794621 hasRelatedWork W2045296353 @default.
- W4220794621 hasRelatedWork W2049950217 @default.
- W4220794621 hasRelatedWork W2162631808 @default.
- W4220794621 hasRelatedWork W2586803801 @default.
- W4220794621 hasRelatedWork W2889074802 @default.
- W4220794621 hasRelatedWork W3210546153 @default.
- W4220794621 hasRelatedWork W4225113063 @default.
- W4220794621 hasRelatedWork W4286891259 @default.
- W4220794621 hasVolume "2022" @default.
- W4220794621 isParatext "false" @default.
- W4220794621 isRetracted "false" @default.
- W4220794621 workType "article" @default.