Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220794871> ?p ?o ?g. }
- W4220794871 endingPage "1330" @default.
- W4220794871 startingPage "1314" @default.
- W4220794871 abstract "Climate change is a global issue that must be considered and addressed immediately. Many articles have been published on climate change mitigation and adaptation. However, new methods are required to explore the complexities of climate change and provide more efficient and effective adaptation and mitigation policies. With the advancement of technology, machine learning (ML) and deep learning (DL) methods have gained considerable popularity in many fields, including climate change. This paper aims to explore the most popular ML and DL methods that have been applied for climate change mitigation and adaptation. Another aim is to determine the most common mitigation and adaptation measures/actions in general, and in urban areas in particular, that have been studied using ML and DL methods. For this purpose, word frequency analysis and topic modeling, specifically the Latent Dirichlet allocation (LDA) as a ML algorithm, are used in this study. The results indicate that the most popular ML technique in both climate change mitigation and adaptation is the Artificial Neural Network. Moreover, among different research areas related to climate change mitigation and adaptation, geoengineering, and land surface temperature are the ones that have used ML and DL algorithms the most." @default.
- W4220794871 created "2022-04-03" @default.
- W4220794871 creator A5002835698 @default.
- W4220794871 creator A5006662309 @default.
- W4220794871 creator A5022881260 @default.
- W4220794871 date "2022-03-25" @default.
- W4220794871 modified "2023-09-27" @default.
- W4220794871 title "Applications of machine learning and deep learning methods for climate change mitigation and adaptation" @default.
- W4220794871 cites W1175625935 @default.
- W4220794871 cites W1556043555 @default.
- W4220794871 cites W1585529040 @default.
- W4220794871 cites W1606555179 @default.
- W4220794871 cites W1980640510 @default.
- W4220794871 cites W1981213426 @default.
- W4220794871 cites W2005501262 @default.
- W4220794871 cites W2029645799 @default.
- W4220794871 cites W2038243828 @default.
- W4220794871 cites W2082485091 @default.
- W4220794871 cites W2118023920 @default.
- W4220794871 cites W2120012334 @default.
- W4220794871 cites W2149298154 @default.
- W4220794871 cites W2154733641 @default.
- W4220794871 cites W2188245729 @default.
- W4220794871 cites W2279234388 @default.
- W4220794871 cites W2363126800 @default.
- W4220794871 cites W2569318879 @default.
- W4220794871 cites W2742361357 @default.
- W4220794871 cites W2795308205 @default.
- W4220794871 cites W2810999103 @default.
- W4220794871 cites W2885427609 @default.
- W4220794871 cites W2897784558 @default.
- W4220794871 cites W2908162093 @default.
- W4220794871 cites W2919115771 @default.
- W4220794871 cites W2942047515 @default.
- W4220794871 cites W2952214074 @default.
- W4220794871 cites W2952400952 @default.
- W4220794871 cites W2952670987 @default.
- W4220794871 cites W2971461196 @default.
- W4220794871 cites W2990621239 @default.
- W4220794871 cites W2996444511 @default.
- W4220794871 cites W3005797502 @default.
- W4220794871 cites W3007785025 @default.
- W4220794871 cites W3009311085 @default.
- W4220794871 cites W3021039041 @default.
- W4220794871 cites W3033371505 @default.
- W4220794871 cites W3033452156 @default.
- W4220794871 cites W3034450467 @default.
- W4220794871 cites W3043222912 @default.
- W4220794871 cites W3046476263 @default.
- W4220794871 cites W3049703454 @default.
- W4220794871 cites W3091943187 @default.
- W4220794871 cites W3112229965 @default.
- W4220794871 cites W3129371263 @default.
- W4220794871 cites W3137708158 @default.
- W4220794871 cites W3158283743 @default.
- W4220794871 cites W3158648516 @default.
- W4220794871 cites W3158725613 @default.
- W4220794871 cites W3188450664 @default.
- W4220794871 cites W4241719525 @default.
- W4220794871 cites W650663117 @default.
- W4220794871 doi "https://doi.org/10.1177/23998083221085281" @default.
- W4220794871 hasPublicationYear "2022" @default.
- W4220794871 type Work @default.
- W4220794871 citedByCount "1" @default.
- W4220794871 countsByYear W42207948712023 @default.
- W4220794871 crossrefType "journal-article" @default.
- W4220794871 hasAuthorship W4220794871A5002835698 @default.
- W4220794871 hasAuthorship W4220794871A5006662309 @default.
- W4220794871 hasAuthorship W4220794871A5022881260 @default.
- W4220794871 hasConcept C107826830 @default.
- W4220794871 hasConcept C115343472 @default.
- W4220794871 hasConcept C119857082 @default.
- W4220794871 hasConcept C120665830 @default.
- W4220794871 hasConcept C121332964 @default.
- W4220794871 hasConcept C132651083 @default.
- W4220794871 hasConcept C139807058 @default.
- W4220794871 hasConcept C154945302 @default.
- W4220794871 hasConcept C171686336 @default.
- W4220794871 hasConcept C17744445 @default.
- W4220794871 hasConcept C18903297 @default.
- W4220794871 hasConcept C199539241 @default.
- W4220794871 hasConcept C2778851808 @default.
- W4220794871 hasConcept C2780586970 @default.
- W4220794871 hasConcept C39432304 @default.
- W4220794871 hasConcept C41008148 @default.
- W4220794871 hasConcept C500882744 @default.
- W4220794871 hasConcept C509746633 @default.
- W4220794871 hasConcept C86803240 @default.
- W4220794871 hasConcept C96240277 @default.
- W4220794871 hasConceptScore W4220794871C107826830 @default.
- W4220794871 hasConceptScore W4220794871C115343472 @default.
- W4220794871 hasConceptScore W4220794871C119857082 @default.
- W4220794871 hasConceptScore W4220794871C120665830 @default.
- W4220794871 hasConceptScore W4220794871C121332964 @default.
- W4220794871 hasConceptScore W4220794871C132651083 @default.
- W4220794871 hasConceptScore W4220794871C139807058 @default.
- W4220794871 hasConceptScore W4220794871C154945302 @default.
- W4220794871 hasConceptScore W4220794871C171686336 @default.