Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220794927> ?p ?o ?g. }
- W4220794927 abstract "Question Generation (QG), as a challenging Natural Language Processing task, aims at generating questions based on given answers and context. Existing QG methods mainly focus on building or training models for specific QG datasets. These works are subject to two major limitations: (1) They are dedicated to specific QG formats (e.g., answer-extraction or multi-choice QG), therefore, if we want to address a new format of QG, a re-design of the QG model is required. (2) Optimal performance is only achieved on the dataset they were just trained on. As a result, we have to train and keep various QG models for different QG datasets, which is resource-intensive and ungeneralizable." @default.
- W4220794927 created "2022-04-03" @default.
- W4220794927 creator A5016415195 @default.
- W4220794927 creator A5027259486 @default.
- W4220794927 creator A5050805542 @default.
- W4220794927 creator A5053452551 @default.
- W4220794927 creator A5081650208 @default.
- W4220794927 creator A5088492734 @default.
- W4220794927 date "2022-04-25" @default.
- W4220794927 modified "2023-10-10" @default.
- W4220794927 title "Unified Question Generation with Continual Lifelong Learning" @default.
- W4220794927 cites W1997865285 @default.
- W4220794927 cites W2133459682 @default.
- W4220794927 cites W2136016364 @default.
- W4220794927 cites W2194775991 @default.
- W4220794927 cites W2413794162 @default.
- W4220794927 cites W2560647685 @default.
- W4220794927 cites W2757978590 @default.
- W4220794927 cites W2788388592 @default.
- W4220794927 cites W2799117791 @default.
- W4220794927 cites W2809291355 @default.
- W4220794927 cites W2883730939 @default.
- W4220794927 cites W2884282566 @default.
- W4220794927 cites W2889670144 @default.
- W4220794927 cites W2890166583 @default.
- W4220794927 cites W2890894339 @default.
- W4220794927 cites W2902360757 @default.
- W4220794927 cites W2906432682 @default.
- W4220794927 cites W2912231389 @default.
- W4220794927 cites W2912924812 @default.
- W4220794927 cites W2948734064 @default.
- W4220794927 cites W2950166131 @default.
- W4220794927 cites W2951431594 @default.
- W4220794927 cites W2962944953 @default.
- W4220794927 cites W2963588172 @default.
- W4220794927 cites W2963661590 @default.
- W4220794927 cites W2963748441 @default.
- W4220794927 cites W2963963993 @default.
- W4220794927 cites W2964189064 @default.
- W4220794927 cites W2966284335 @default.
- W4220794927 cites W2970250435 @default.
- W4220794927 cites W2970796366 @default.
- W4220794927 cites W2988673764 @default.
- W4220794927 cites W2996388263 @default.
- W4220794927 cites W2997054320 @default.
- W4220794927 cites W3012643966 @default.
- W4220794927 cites W3034856281 @default.
- W4220794927 cites W3035298482 @default.
- W4220794927 cites W3100152912 @default.
- W4220794927 cites W3101798106 @default.
- W4220794927 cites W3102854726 @default.
- W4220794927 cites W3118069529 @default.
- W4220794927 cites W3152574567 @default.
- W4220794927 cites W3153601436 @default.
- W4220794927 cites W3156928032 @default.
- W4220794927 cites W3162337509 @default.
- W4220794927 cites W3172053684 @default.
- W4220794927 doi "https://doi.org/10.1145/3485447.3511930" @default.
- W4220794927 hasPublicationYear "2022" @default.
- W4220794927 type Work @default.
- W4220794927 citedByCount "2" @default.
- W4220794927 countsByYear W42207949272022 @default.
- W4220794927 countsByYear W42207949272023 @default.
- W4220794927 crossrefType "proceedings-article" @default.
- W4220794927 hasAuthorship W4220794927A5016415195 @default.
- W4220794927 hasAuthorship W4220794927A5027259486 @default.
- W4220794927 hasAuthorship W4220794927A5050805542 @default.
- W4220794927 hasAuthorship W4220794927A5053452551 @default.
- W4220794927 hasAuthorship W4220794927A5081650208 @default.
- W4220794927 hasAuthorship W4220794927A5088492734 @default.
- W4220794927 hasBestOaLocation W42207949272 @default.
- W4220794927 hasConcept C120665830 @default.
- W4220794927 hasConcept C121332964 @default.
- W4220794927 hasConcept C127413603 @default.
- W4220794927 hasConcept C136764020 @default.
- W4220794927 hasConcept C151730666 @default.
- W4220794927 hasConcept C154945302 @default.
- W4220794927 hasConcept C183322885 @default.
- W4220794927 hasConcept C192209626 @default.
- W4220794927 hasConcept C201995342 @default.
- W4220794927 hasConcept C206345919 @default.
- W4220794927 hasConcept C2777855551 @default.
- W4220794927 hasConcept C2779343474 @default.
- W4220794927 hasConcept C2780451532 @default.
- W4220794927 hasConcept C2781238097 @default.
- W4220794927 hasConcept C31258907 @default.
- W4220794927 hasConcept C41008148 @default.
- W4220794927 hasConcept C86803240 @default.
- W4220794927 hasConceptScore W4220794927C120665830 @default.
- W4220794927 hasConceptScore W4220794927C121332964 @default.
- W4220794927 hasConceptScore W4220794927C127413603 @default.
- W4220794927 hasConceptScore W4220794927C136764020 @default.
- W4220794927 hasConceptScore W4220794927C151730666 @default.
- W4220794927 hasConceptScore W4220794927C154945302 @default.
- W4220794927 hasConceptScore W4220794927C183322885 @default.
- W4220794927 hasConceptScore W4220794927C192209626 @default.
- W4220794927 hasConceptScore W4220794927C201995342 @default.
- W4220794927 hasConceptScore W4220794927C206345919 @default.
- W4220794927 hasConceptScore W4220794927C2777855551 @default.
- W4220794927 hasConceptScore W4220794927C2779343474 @default.