Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220795747> ?p ?o ?g. }
- W4220795747 abstract "The leading cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung disease secondary to chronic airway infection and inflammation; however, what drives CF airway infection and inflammation is not well understood. By providing a physiological snapshot of the airway, metabolomics can provide insight into these processes. Linking metabolomic data with microbiome data and phenotypic measures can reveal complex relationships between metabolites, lower airway bacterial communities, and disease outcomes. In this study, we characterize the airway metabolome in bronchoalveolar lavage fluid (BALF) samples from persons with CF (PWCF) and disease control (DC) subjects and use multi-omic network analysis to identify correlations with the airway microbiome. The Biocrates targeted liquid chromatography mass spectrometry (LC-MS) platform was used to measure 409 metabolomic features in BALF obtained during clinically indicated bronchoscopy. Total bacterial load (TBL) was measured using quantitative polymerase chain reaction (qPCR). The Qiagen EZ1 Advanced automated extraction platform was used to extract DNA, and bacterial profiling was performed using 16S sequencing. Differences in metabolomic features across disease groups were assessed univariately using Wilcoxon rank sum tests, and Random forest (RF) was used to identify features that discriminated across the groups. Features were compared to TBL and markers of inflammation, including white blood cell count (WBC) and percent neutrophils. Sparse supervised canonical correlation network analysis (SsCCNet) was used to assess multi-omic correlations. The CF metabolome was characterized by increased amino acids and decreased acylcarnitines. Amino acids and acylcarnitines were also among the features most strongly correlated with inflammation and bacterial burden. RF identified strong metabolomic predictors of CF status, including L-methionine-S-oxide. SsCCNet identified correlations between the metabolome and the microbiome, including correlations between a traditional CF pathogen, Staphylococcus , a group of nontraditional taxa, including Prevotella , and a subnetwork of specific metabolomic markers. In conclusion, our work identified metabolomic characteristics unique to the CF airway and uncovered multi-omic correlations that merit additional study." @default.
- W4220795747 created "2022-04-03" @default.
- W4220795747 creator A5017271124 @default.
- W4220795747 creator A5019328927 @default.
- W4220795747 creator A5033832107 @default.
- W4220795747 creator A5040495038 @default.
- W4220795747 creator A5041244342 @default.
- W4220795747 creator A5060111017 @default.
- W4220795747 creator A5072220989 @default.
- W4220795747 creator A5088485886 @default.
- W4220795747 date "2022-03-10" @default.
- W4220795747 modified "2023-10-01" @default.
- W4220795747 title "Network Analysis to Identify Multi-Omic Correlations in the Lower Airways of Children With Cystic Fibrosis" @default.
- W4220795747 cites W1532547192 @default.
- W4220795747 cites W1576703428 @default.
- W4220795747 cites W1833955811 @default.
- W4220795747 cites W1848355102 @default.
- W4220795747 cites W1975783279 @default.
- W4220795747 cites W1987882175 @default.
- W4220795747 cites W1991047667 @default.
- W4220795747 cites W1994712122 @default.
- W4220795747 cites W1999295494 @default.
- W4220795747 cites W2010050707 @default.
- W4220795747 cites W2010058706 @default.
- W4220795747 cites W2028621708 @default.
- W4220795747 cites W2029692696 @default.
- W4220795747 cites W2038555213 @default.
- W4220795747 cites W2040447429 @default.
- W4220795747 cites W2045997821 @default.
- W4220795747 cites W2046086386 @default.
- W4220795747 cites W2048319348 @default.
- W4220795747 cites W2049025796 @default.
- W4220795747 cites W2051836609 @default.
- W4220795747 cites W2052912238 @default.
- W4220795747 cites W2055857822 @default.
- W4220795747 cites W2056386675 @default.
- W4220795747 cites W2062790335 @default.
- W4220795747 cites W2078752865 @default.
- W4220795747 cites W2096863518 @default.
- W4220795747 cites W2097198731 @default.
- W4220795747 cites W2097944090 @default.
- W4220795747 cites W2101417989 @default.
- W4220795747 cites W2105351532 @default.
- W4220795747 cites W2106336240 @default.
- W4220795747 cites W2107654003 @default.
- W4220795747 cites W2108716844 @default.
- W4220795747 cites W2110065044 @default.
- W4220795747 cites W2114392707 @default.
- W4220795747 cites W2116180558 @default.
- W4220795747 cites W2128480720 @default.
- W4220795747 cites W2129559051 @default.
- W4220795747 cites W2131585020 @default.
- W4220795747 cites W2135651648 @default.
- W4220795747 cites W2145068664 @default.
- W4220795747 cites W2150977134 @default.
- W4220795747 cites W2155737151 @default.
- W4220795747 cites W2157584041 @default.
- W4220795747 cites W2168894283 @default.
- W4220795747 cites W2170149258 @default.
- W4220795747 cites W2262231456 @default.
- W4220795747 cites W2332736697 @default.
- W4220795747 cites W2332886042 @default.
- W4220795747 cites W2334960750 @default.
- W4220795747 cites W2555982904 @default.
- W4220795747 cites W2560603970 @default.
- W4220795747 cites W2587583310 @default.
- W4220795747 cites W2589766919 @default.
- W4220795747 cites W2770873502 @default.
- W4220795747 cites W2793726343 @default.
- W4220795747 cites W2891351507 @default.
- W4220795747 cites W2911964244 @default.
- W4220795747 cites W2935406968 @default.
- W4220795747 cites W2938032333 @default.
- W4220795747 cites W2940998296 @default.
- W4220795747 cites W2949852516 @default.
- W4220795747 cites W3018786567 @default.
- W4220795747 cites W3036188175 @default.
- W4220795747 cites W3120396497 @default.
- W4220795747 cites W3203876879 @default.
- W4220795747 cites W4241884576 @default.
- W4220795747 doi "https://doi.org/10.3389/fcimb.2022.805170" @default.
- W4220795747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35360097" @default.
- W4220795747 hasPublicationYear "2022" @default.
- W4220795747 type Work @default.
- W4220795747 citedByCount "6" @default.
- W4220795747 countsByYear W42207957472022 @default.
- W4220795747 countsByYear W42207957472023 @default.
- W4220795747 crossrefType "journal-article" @default.
- W4220795747 hasAuthorship W4220795747A5017271124 @default.
- W4220795747 hasAuthorship W4220795747A5019328927 @default.
- W4220795747 hasAuthorship W4220795747A5033832107 @default.
- W4220795747 hasAuthorship W4220795747A5040495038 @default.
- W4220795747 hasAuthorship W4220795747A5041244342 @default.
- W4220795747 hasAuthorship W4220795747A5060111017 @default.
- W4220795747 hasAuthorship W4220795747A5072220989 @default.
- W4220795747 hasAuthorship W4220795747A5088485886 @default.
- W4220795747 hasBestOaLocation W42207957471 @default.
- W4220795747 hasConcept C105922876 @default.
- W4220795747 hasConcept C126322002 @default.
- W4220795747 hasConcept C135870905 @default.