Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220795810> ?p ?o ?g. }
- W4220795810 endingPage "1899" @default.
- W4220795810 startingPage "1881" @default.
- W4220795810 abstract "Abstract Wall-rock assimilation can cause effective sulfide saturation in magmas and lead to the formation of base and precious metal sulfide deposits. Detailed assessments of how assimilation affects the sulfur content at sulfide saturation (SCSS) in magmas have been scarce because of the lack of suitable thermodynamic modeling tools. The Magma Chamber Simulator (MCS) is the first geochemical modeling software that accounts for thermodynamic wall-rock phase equilibrium in open magmatic systems experiencing recharge-assimilation-fractional crystallization. We used the MCS to model SCSS in a magmatic system corresponding to the parental melt of the Partridge River intrusion of the Duluth Complex, Minnesota. This intrusion hosts several Cu-Ni deposits in troctolitic and noritic rocks, which both show evidence of assimilation of the adjacent Virginia Formation black shale. Our simulations show that the dominantly troctolitic rocks can form via fractional crystallization if the parental melt is hydrous (≥ 1 wt % H2O), while gabbroic rocks dominate when the parental melt is H2O poor (≤ 0.14 wt % H2O). Formation of norite from the hydrous parental melt requires ~20–30% of selective assimilation of black shale partial melts or bulk assimilation of stoped blocks. In the fractional crystallization simulations, increasing the H2O content of the parental melt lowers SCSS. In the hydrous fractional crystallization scenarios, SCSS is lowered further by the depletion of FeO from the residual melt, owing to enhanced olivine stability. In the assimilation simulations, the residual melt in the magma subsystem becomes enriched in SiO2, Al2O3, K2O, and H2O with simultaneous depletion in FeO, MgO, CaO, and Na2O. These compositional changes promote sulfide saturation—an effect that is more pronounced in selective rather than in bulk assimilation scenarios. Trace element models, used as a proxy for the efficiency of sulfur assimilation, show that sulfur should behave as an incompatible element (DWR (S) ≤ 1) to wall rock in the selective assimilation simulations, i.e., enriched in early-assimilated wall-rock fluids and/or partial melts, in order to fulfill the natural sulfur isotope criteria of the Duluth Complex. Bulk assimilation may also be efficient enough to modify the sulfur isotope composition, but it requires a large amount of crystallization in the magma and is, hence, considered less likely to be the main process for sulfur assimilation. If wall-rock sulfur is effectively transported to the magma, in situ precipitation of sulfides without notable subsequent upgrading by dynamic processes could produce the sulfide grade of an average Cu-Ni deposit in the Partridge River intrusion." @default.
- W4220795810 created "2022-04-03" @default.
- W4220795810 creator A5021581947 @default.
- W4220795810 creator A5060292667 @default.
- W4220795810 creator A5060563162 @default.
- W4220795810 creator A5074243498 @default.
- W4220795810 date "2022-12-01" @default.
- W4220795810 modified "2023-10-14" @default.
- W4220795810 title "Complex Effects of Assimilation on Sulfide Saturation Revealed by Modeling with the Magma Chamber Simulator: A Case Study on the Duluth Complex, Minnesota, USA" @default.
- W4220795810 cites W1677996963 @default.
- W4220795810 cites W1969577004 @default.
- W4220795810 cites W1978262868 @default.
- W4220795810 cites W1987329135 @default.
- W4220795810 cites W1996988503 @default.
- W4220795810 cites W1997933620 @default.
- W4220795810 cites W2006268792 @default.
- W4220795810 cites W2011786681 @default.
- W4220795810 cites W2011951885 @default.
- W4220795810 cites W2016522058 @default.
- W4220795810 cites W2027877967 @default.
- W4220795810 cites W2039809492 @default.
- W4220795810 cites W2042692134 @default.
- W4220795810 cites W2044376027 @default.
- W4220795810 cites W2048581009 @default.
- W4220795810 cites W2056075756 @default.
- W4220795810 cites W2063111258 @default.
- W4220795810 cites W2073172102 @default.
- W4220795810 cites W2073865687 @default.
- W4220795810 cites W2073878194 @default.
- W4220795810 cites W2075408083 @default.
- W4220795810 cites W2078639105 @default.
- W4220795810 cites W2097485179 @default.
- W4220795810 cites W2103656667 @default.
- W4220795810 cites W2106436264 @default.
- W4220795810 cites W2116800634 @default.
- W4220795810 cites W2117131502 @default.
- W4220795810 cites W2119091455 @default.
- W4220795810 cites W2121755657 @default.
- W4220795810 cites W2125776688 @default.
- W4220795810 cites W2135379769 @default.
- W4220795810 cites W2139378900 @default.
- W4220795810 cites W2147064838 @default.
- W4220795810 cites W2156263353 @default.
- W4220795810 cites W2161661537 @default.
- W4220795810 cites W2168808656 @default.
- W4220795810 cites W2319427992 @default.
- W4220795810 cites W2322220795 @default.
- W4220795810 cites W2527185189 @default.
- W4220795810 cites W2604587559 @default.
- W4220795810 cites W2607910688 @default.
- W4220795810 cites W2758622817 @default.
- W4220795810 cites W2770738374 @default.
- W4220795810 cites W2903984496 @default.
- W4220795810 cites W2920515251 @default.
- W4220795810 cites W3030122972 @default.
- W4220795810 cites W3082919529 @default.
- W4220795810 cites W3089023001 @default.
- W4220795810 cites W3092701264 @default.
- W4220795810 cites W3092918054 @default.
- W4220795810 cites W3094115871 @default.
- W4220795810 cites W3195230732 @default.
- W4220795810 cites W3209782575 @default.
- W4220795810 cites W397299577 @default.
- W4220795810 cites W569724340 @default.
- W4220795810 cites W631750548 @default.
- W4220795810 doi "https://doi.org/10.5382/econgeo.4917" @default.
- W4220795810 hasPublicationYear "2022" @default.
- W4220795810 type Work @default.
- W4220795810 citedByCount "1" @default.
- W4220795810 countsByYear W42207958102022 @default.
- W4220795810 crossrefType "journal-article" @default.
- W4220795810 hasAuthorship W4220795810A5021581947 @default.
- W4220795810 hasAuthorship W4220795810A5060292667 @default.
- W4220795810 hasAuthorship W4220795810A5060563162 @default.
- W4220795810 hasAuthorship W4220795810A5074243498 @default.
- W4220795810 hasConcept C114614502 @default.
- W4220795810 hasConcept C11872896 @default.
- W4220795810 hasConcept C120806208 @default.
- W4220795810 hasConcept C121332964 @default.
- W4220795810 hasConcept C127313418 @default.
- W4220795810 hasConcept C161509811 @default.
- W4220795810 hasConcept C167236342 @default.
- W4220795810 hasConcept C17409809 @default.
- W4220795810 hasConcept C183222429 @default.
- W4220795810 hasConcept C191897082 @default.
- W4220795810 hasConcept C192562407 @default.
- W4220795810 hasConcept C199289684 @default.
- W4220795810 hasConcept C203036418 @default.
- W4220795810 hasConcept C2780596425 @default.
- W4220795810 hasConcept C33923547 @default.
- W4220795810 hasConcept C9566828 @default.
- W4220795810 hasConcept C97355855 @default.
- W4220795810 hasConcept C9930424 @default.
- W4220795810 hasConceptScore W4220795810C114614502 @default.
- W4220795810 hasConceptScore W4220795810C11872896 @default.
- W4220795810 hasConceptScore W4220795810C120806208 @default.
- W4220795810 hasConceptScore W4220795810C121332964 @default.
- W4220795810 hasConceptScore W4220795810C127313418 @default.