Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220796693> ?p ?o ?g. }
- W4220796693 endingPage "344" @default.
- W4220796693 startingPage "327" @default.
- W4220796693 abstract "In the precision marketing of a new product, it is a challenge to allocate limited resources to the target customer groups with different characteristics. We presented a framework using the distance-based algorithm, K-nearest neighbors, and support vector machine to capture customers’ preferences toward promotion channels. Additionally, online learning programming was combined with machine learning strategies to fit a dynamic environment, evaluating its performance through a parsimonious model of minimum regret. A resource optimization model was proposed using classification results as input. In particular, we collected data from an institution that provides financial credit products to capital-constrained small businesses. Our sample contained 525,919 customers who will be introduced to a new product. By simulating different scenarios between resources and demand, we showed an up to 22.42% increase in the number of expected borrowers when KNN was performed with an optimal resource allocation strategy. Our results also show that KNN is the most stable method to perform classification and that the distance-based algorithm has the most efficient adoption with online learning." @default.
- W4220796693 created "2022-04-03" @default.
- W4220796693 creator A5011020397 @default.
- W4220796693 creator A5018881082 @default.
- W4220796693 creator A5035463891 @default.
- W4220796693 creator A5089418255 @default.
- W4220796693 date "2022-03-09" @default.
- W4220796693 modified "2023-09-26" @default.
- W4220796693 title "Dynamic Marketing Resource Allocation with Two-Stage Decisions" @default.
- W4220796693 cites W1967228352 @default.
- W4220796693 cites W1977632916 @default.
- W4220796693 cites W1990716022 @default.
- W4220796693 cites W2050599922 @default.
- W4220796693 cites W2115769109 @default.
- W4220796693 cites W2141843793 @default.
- W4220796693 cites W2153841490 @default.
- W4220796693 cites W2164274202 @default.
- W4220796693 cites W2291815641 @default.
- W4220796693 cites W2493118020 @default.
- W4220796693 cites W2573153646 @default.
- W4220796693 cites W2619725192 @default.
- W4220796693 cites W2761803723 @default.
- W4220796693 cites W2791431290 @default.
- W4220796693 cites W2892669661 @default.
- W4220796693 cites W2913321842 @default.
- W4220796693 cites W2952992820 @default.
- W4220796693 cites W2966312246 @default.
- W4220796693 cites W2980746347 @default.
- W4220796693 cites W2981782452 @default.
- W4220796693 cites W300153561 @default.
- W4220796693 cites W3040272564 @default.
- W4220796693 cites W3081095512 @default.
- W4220796693 cites W3086290744 @default.
- W4220796693 cites W3121682366 @default.
- W4220796693 cites W3122167207 @default.
- W4220796693 cites W3122331455 @default.
- W4220796693 cites W3124481258 @default.
- W4220796693 cites W3125107113 @default.
- W4220796693 cites W3159169350 @default.
- W4220796693 cites W3177278879 @default.
- W4220796693 cites W3181310927 @default.
- W4220796693 cites W3193345865 @default.
- W4220796693 doi "https://doi.org/10.3390/jtaer17010017" @default.
- W4220796693 hasPublicationYear "2022" @default.
- W4220796693 type Work @default.
- W4220796693 citedByCount "1" @default.
- W4220796693 countsByYear W42207966932022 @default.
- W4220796693 crossrefType "journal-article" @default.
- W4220796693 hasAuthorship W4220796693A5011020397 @default.
- W4220796693 hasAuthorship W4220796693A5018881082 @default.
- W4220796693 hasAuthorship W4220796693A5035463891 @default.
- W4220796693 hasAuthorship W4220796693A5089418255 @default.
- W4220796693 hasBestOaLocation W42207966931 @default.
- W4220796693 hasConcept C119857082 @default.
- W4220796693 hasConcept C154945302 @default.
- W4220796693 hasConcept C185592680 @default.
- W4220796693 hasConcept C198531522 @default.
- W4220796693 hasConcept C206345919 @default.
- W4220796693 hasConcept C2524010 @default.
- W4220796693 hasConcept C29202148 @default.
- W4220796693 hasConcept C31258907 @default.
- W4220796693 hasConcept C33923547 @default.
- W4220796693 hasConcept C41008148 @default.
- W4220796693 hasConcept C43617362 @default.
- W4220796693 hasConcept C50817715 @default.
- W4220796693 hasConcept C90673727 @default.
- W4220796693 hasConceptScore W4220796693C119857082 @default.
- W4220796693 hasConceptScore W4220796693C154945302 @default.
- W4220796693 hasConceptScore W4220796693C185592680 @default.
- W4220796693 hasConceptScore W4220796693C198531522 @default.
- W4220796693 hasConceptScore W4220796693C206345919 @default.
- W4220796693 hasConceptScore W4220796693C2524010 @default.
- W4220796693 hasConceptScore W4220796693C29202148 @default.
- W4220796693 hasConceptScore W4220796693C31258907 @default.
- W4220796693 hasConceptScore W4220796693C33923547 @default.
- W4220796693 hasConceptScore W4220796693C41008148 @default.
- W4220796693 hasConceptScore W4220796693C43617362 @default.
- W4220796693 hasConceptScore W4220796693C50817715 @default.
- W4220796693 hasConceptScore W4220796693C90673727 @default.
- W4220796693 hasFunder F4320321001 @default.
- W4220796693 hasFunder F4320322598 @default.
- W4220796693 hasIssue "1" @default.
- W4220796693 hasLocation W42207966931 @default.
- W4220796693 hasLocation W42207966932 @default.
- W4220796693 hasOpenAccess W4220796693 @default.
- W4220796693 hasPrimaryLocation W42207966931 @default.
- W4220796693 hasRelatedWork W2961085424 @default.
- W4220796693 hasRelatedWork W3046775127 @default.
- W4220796693 hasRelatedWork W3170094116 @default.
- W4220796693 hasRelatedWork W4205958290 @default.
- W4220796693 hasRelatedWork W4285260836 @default.
- W4220796693 hasRelatedWork W4286629047 @default.
- W4220796693 hasRelatedWork W4306321456 @default.
- W4220796693 hasRelatedWork W4306674287 @default.
- W4220796693 hasRelatedWork W4386462264 @default.
- W4220796693 hasRelatedWork W4224009465 @default.
- W4220796693 hasVolume "17" @default.
- W4220796693 isParatext "false" @default.