Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220797164> ?p ?o ?g. }
- W4220797164 endingPage "2377" @default.
- W4220797164 startingPage "2377" @default.
- W4220797164 abstract "Reconstruction algorithms are at the forefront of accessible and compact data collection. In this paper, we present a novel reconstruction algorithm, SpecRA, that adapts based on the relative rarity of a signal compared to previous observations. We leverage a data-driven approach to learn optimal encoder-array sensitivities for a novel filter-array spectrometer. By taking advantage of the regularities mined from diverse online repositories, we are able to exploit low-dimensional patterns for improved spectral reconstruction from as few as p=2 channels. Furthermore, the performance of SpecRA is largely independent of signal complexity. Our results illustrate the superiority of our method over conventional approaches and provide a framework towards “fourth paradigm” spectral sensing. We hope that this work can help reduce the size, weight and cost constraints of future spectrometers for specific spectral monitoring tasks in applied contexts such as in remote sensing, healthcare, and quality control." @default.
- W4220797164 created "2022-04-03" @default.
- W4220797164 creator A5018405414 @default.
- W4220797164 creator A5025003720 @default.
- W4220797164 creator A5059556372 @default.
- W4220797164 date "2022-03-19" @default.
- W4220797164 modified "2023-10-01" @default.
- W4220797164 title "Towards ‘Fourth Paradigm’ Spectral Sensing" @default.
- W4220797164 cites W1914817934 @default.
- W4220797164 cites W1972986993 @default.
- W4220797164 cites W1997064484 @default.
- W4220797164 cites W2002498099 @default.
- W4220797164 cites W2006036371 @default.
- W4220797164 cites W2023630749 @default.
- W4220797164 cites W2058127401 @default.
- W4220797164 cites W2063422006 @default.
- W4220797164 cites W2067931421 @default.
- W4220797164 cites W2080630433 @default.
- W4220797164 cites W2091397530 @default.
- W4220797164 cites W2094304765 @default.
- W4220797164 cites W2105464873 @default.
- W4220797164 cites W2120150551 @default.
- W4220797164 cites W2122538988 @default.
- W4220797164 cites W2125598538 @default.
- W4220797164 cites W2128859735 @default.
- W4220797164 cites W2133087968 @default.
- W4220797164 cites W2133794770 @default.
- W4220797164 cites W2135046866 @default.
- W4220797164 cites W2138621882 @default.
- W4220797164 cites W2145096794 @default.
- W4220797164 cites W2160547390 @default.
- W4220797164 cites W2275919874 @default.
- W4220797164 cites W2295904998 @default.
- W4220797164 cites W2410712308 @default.
- W4220797164 cites W2768203249 @default.
- W4220797164 cites W2783018597 @default.
- W4220797164 cites W2793155783 @default.
- W4220797164 cites W2796709898 @default.
- W4220797164 cites W2848020186 @default.
- W4220797164 cites W2906076216 @default.
- W4220797164 cites W2946644377 @default.
- W4220797164 cites W2959479859 @default.
- W4220797164 cites W2963739154 @default.
- W4220797164 cites W2969089138 @default.
- W4220797164 cites W2971905179 @default.
- W4220797164 cites W2972084804 @default.
- W4220797164 cites W3023114228 @default.
- W4220797164 cites W3040032943 @default.
- W4220797164 cites W3046450754 @default.
- W4220797164 cites W3105778049 @default.
- W4220797164 cites W3126861281 @default.
- W4220797164 cites W4252713891 @default.
- W4220797164 doi "https://doi.org/10.3390/s22062377" @default.
- W4220797164 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35336550" @default.
- W4220797164 hasPublicationYear "2022" @default.
- W4220797164 type Work @default.
- W4220797164 citedByCount "2" @default.
- W4220797164 countsByYear W42207971642022 @default.
- W4220797164 crossrefType "journal-article" @default.
- W4220797164 hasAuthorship W4220797164A5018405414 @default.
- W4220797164 hasAuthorship W4220797164A5025003720 @default.
- W4220797164 hasAuthorship W4220797164A5059556372 @default.
- W4220797164 hasBestOaLocation W42207971641 @default.
- W4220797164 hasConcept C104267543 @default.
- W4220797164 hasConcept C111919701 @default.
- W4220797164 hasConcept C113775141 @default.
- W4220797164 hasConcept C11413529 @default.
- W4220797164 hasConcept C118505674 @default.
- W4220797164 hasConcept C121332964 @default.
- W4220797164 hasConcept C124101348 @default.
- W4220797164 hasConcept C153083717 @default.
- W4220797164 hasConcept C154945302 @default.
- W4220797164 hasConcept C165696696 @default.
- W4220797164 hasConcept C199360897 @default.
- W4220797164 hasConcept C2779843651 @default.
- W4220797164 hasConcept C33390570 @default.
- W4220797164 hasConcept C38652104 @default.
- W4220797164 hasConcept C41008148 @default.
- W4220797164 hasConcept C62520636 @default.
- W4220797164 hasConcept C70958404 @default.
- W4220797164 hasConcept C79403827 @default.
- W4220797164 hasConcept C84462506 @default.
- W4220797164 hasConcept C9390403 @default.
- W4220797164 hasConceptScore W4220797164C104267543 @default.
- W4220797164 hasConceptScore W4220797164C111919701 @default.
- W4220797164 hasConceptScore W4220797164C113775141 @default.
- W4220797164 hasConceptScore W4220797164C11413529 @default.
- W4220797164 hasConceptScore W4220797164C118505674 @default.
- W4220797164 hasConceptScore W4220797164C121332964 @default.
- W4220797164 hasConceptScore W4220797164C124101348 @default.
- W4220797164 hasConceptScore W4220797164C153083717 @default.
- W4220797164 hasConceptScore W4220797164C154945302 @default.
- W4220797164 hasConceptScore W4220797164C165696696 @default.
- W4220797164 hasConceptScore W4220797164C199360897 @default.
- W4220797164 hasConceptScore W4220797164C2779843651 @default.
- W4220797164 hasConceptScore W4220797164C33390570 @default.
- W4220797164 hasConceptScore W4220797164C38652104 @default.
- W4220797164 hasConceptScore W4220797164C41008148 @default.