Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220797824> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4220797824 endingPage "110916" @default.
- W4220797824 startingPage "110916" @default.
- W4220797824 abstract "In view of the inability of the GM model to account for random errors in the coefficient matrix and the fact that high-dimensional matrices reduce operational efficiency for any model, a novel Sequential Solution with reference to the nonlinear Gauss-Hemmert model, namely SSGH, is proposed, in which the associated efficient procedure is implemented by correlating only previous results and observations of the current period. The results show that the accuracy of parameter estimates as well as time-consumption, compared to the batch method based on the non-linear Gauss–Markov model and its sequential method, are significantly improved. Moreover, the proposed method is at least 60% more computationally efficient while maintaining the same level of accuracy as the Gauss-Helmert batch solution. It is undeniable, however, that the impact such as correlations among periods, gross errors and rank deficient, etc., require further investigation." @default.
- W4220797824 created "2022-04-03" @default.
- W4220797824 creator A5013648631 @default.
- W4220797824 creator A5016387167 @default.
- W4220797824 creator A5044314141 @default.
- W4220797824 creator A5079362458 @default.
- W4220797824 creator A5084444802 @default.
- W4220797824 date "2022-04-01" @default.
- W4220797824 modified "2023-10-13" @default.
- W4220797824 title "A novel sequential solution for multi-period observations based on the Gauss-Helmert model" @default.
- W4220797824 cites W1967649450 @default.
- W4220797824 cites W1971585425 @default.
- W4220797824 cites W1976377934 @default.
- W4220797824 cites W2005490094 @default.
- W4220797824 cites W2008229822 @default.
- W4220797824 cites W2028477434 @default.
- W4220797824 cites W2034005478 @default.
- W4220797824 cites W2045111375 @default.
- W4220797824 cites W2062577207 @default.
- W4220797824 cites W2082028360 @default.
- W4220797824 cites W2084423326 @default.
- W4220797824 cites W2091992680 @default.
- W4220797824 cites W2139267014 @default.
- W4220797824 cites W2153290280 @default.
- W4220797824 cites W2175287832 @default.
- W4220797824 cites W2543302342 @default.
- W4220797824 cites W2735117863 @default.
- W4220797824 cites W2748724772 @default.
- W4220797824 cites W2753308315 @default.
- W4220797824 cites W2767053681 @default.
- W4220797824 cites W2774798959 @default.
- W4220797824 cites W2783632829 @default.
- W4220797824 cites W2790465647 @default.
- W4220797824 cites W2804734937 @default.
- W4220797824 cites W2821222439 @default.
- W4220797824 cites W2917095256 @default.
- W4220797824 cites W2954296989 @default.
- W4220797824 cites W3005194147 @default.
- W4220797824 cites W3035912090 @default.
- W4220797824 cites W3043894343 @default.
- W4220797824 cites W3084778095 @default.
- W4220797824 cites W3095353420 @default.
- W4220797824 cites W4243792306 @default.
- W4220797824 doi "https://doi.org/10.1016/j.measurement.2022.110916" @default.
- W4220797824 hasPublicationYear "2022" @default.
- W4220797824 type Work @default.
- W4220797824 citedByCount "1" @default.
- W4220797824 crossrefType "journal-article" @default.
- W4220797824 hasAuthorship W4220797824A5013648631 @default.
- W4220797824 hasAuthorship W4220797824A5016387167 @default.
- W4220797824 hasAuthorship W4220797824A5044314141 @default.
- W4220797824 hasAuthorship W4220797824A5079362458 @default.
- W4220797824 hasAuthorship W4220797824A5084444802 @default.
- W4220797824 hasConcept C106487976 @default.
- W4220797824 hasConcept C11413529 @default.
- W4220797824 hasConcept C114614502 @default.
- W4220797824 hasConcept C121332964 @default.
- W4220797824 hasConcept C126255220 @default.
- W4220797824 hasConcept C158622935 @default.
- W4220797824 hasConcept C159985019 @default.
- W4220797824 hasConcept C161794534 @default.
- W4220797824 hasConcept C164226766 @default.
- W4220797824 hasConcept C192562407 @default.
- W4220797824 hasConcept C28826006 @default.
- W4220797824 hasConcept C33923547 @default.
- W4220797824 hasConcept C41008148 @default.
- W4220797824 hasConcept C62520636 @default.
- W4220797824 hasConceptScore W4220797824C106487976 @default.
- W4220797824 hasConceptScore W4220797824C11413529 @default.
- W4220797824 hasConceptScore W4220797824C114614502 @default.
- W4220797824 hasConceptScore W4220797824C121332964 @default.
- W4220797824 hasConceptScore W4220797824C126255220 @default.
- W4220797824 hasConceptScore W4220797824C158622935 @default.
- W4220797824 hasConceptScore W4220797824C159985019 @default.
- W4220797824 hasConceptScore W4220797824C161794534 @default.
- W4220797824 hasConceptScore W4220797824C164226766 @default.
- W4220797824 hasConceptScore W4220797824C192562407 @default.
- W4220797824 hasConceptScore W4220797824C28826006 @default.
- W4220797824 hasConceptScore W4220797824C33923547 @default.
- W4220797824 hasConceptScore W4220797824C41008148 @default.
- W4220797824 hasConceptScore W4220797824C62520636 @default.
- W4220797824 hasLocation W42207978241 @default.
- W4220797824 hasOpenAccess W4220797824 @default.
- W4220797824 hasPrimaryLocation W42207978241 @default.
- W4220797824 hasRelatedWork W1989925552 @default.
- W4220797824 hasRelatedWork W2025511434 @default.
- W4220797824 hasRelatedWork W2044496651 @default.
- W4220797824 hasRelatedWork W2050801211 @default.
- W4220797824 hasRelatedWork W2055916644 @default.
- W4220797824 hasRelatedWork W2079176455 @default.
- W4220797824 hasRelatedWork W2783911801 @default.
- W4220797824 hasRelatedWork W2952285051 @default.
- W4220797824 hasRelatedWork W3118068154 @default.
- W4220797824 hasRelatedWork W4234996786 @default.
- W4220797824 hasVolume "193" @default.
- W4220797824 isParatext "false" @default.
- W4220797824 isRetracted "false" @default.
- W4220797824 workType "article" @default.