Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220797864> ?p ?o ?g. }
- W4220797864 endingPage "1270" @default.
- W4220797864 startingPage "1270" @default.
- W4220797864 abstract "One of the key applications of digital elevation models (DEMs) is cartographic relief presentation. DEMs are widely used in mapping, most commonly in the form of contours, hypsometric tints, and hill shading. Recent advancements in the coverage, quality, and resolution of global DEMs facilitate the overall improvement of the detail and reliability of terrain-related research. At the same time, geographic problem solving is conducted in a wide variety of scales, and the data used for mapping should have the corresponding level of detail. Specifically, at small scales, intensive generalization is needed, which is also true for elevation data. With the widespread accessibility of detailed DEMs, this principle is often violated, and the data are used for mapping at scales far smaller than what is appropriate. Small-scale relief shading obtained from fine-resolution DEMs is excessively detailed and brings an unclear representation of the Earth’s surface instead of emphasizing what is important at the scale of visualization. Existing coarse-resolution global DEMs do not resolve the issue, since they accumulate the maximum possible information in every pixel, and therefore also require reduction in detail to obtain a high-quality cartographic image. It is clear that guidelines and effective principles for DEM generalization at small scales are needed. Numerous algorithms have been developed for the generalization of elevation data represented either in gridded, contoured, or pointwise form. However, the answer to the most important question—When should we stop surface simplification?—remains unclear. Primitive error-based measures such as vertical distance are not effective for cartography, since they do not account for the landform structure of the surface perceived by the map reader. The current paper approached the problem by elaborating the granularity—a newly developed property of DEMs, which characterizes the typical size of a landform represented on the DEM surface. A methodology of estimating the granularity through a landform width measure was conceptualized and implemented as software. Using the developed program tools, the optimal granularity was statistically learned from DEMs reconstructed for multiple fragments of manually drawn 1:200,000, 1:500,000, and 1:1,000,000 topographic maps covering different relief types. It was shown that the relative granularity should be 5–6 mm at the mapping scale to achieve the clearness of relief presentation typical for manually drawn maps. We then demonstrate how the granularity measure can be used effectively as a constraint during DEM generalization. Experimental results on a combination of contours, hypsometric tints, and hill shading indicated clearly that the optimal level of detail in small-scale cartographic relief presentation can be achieved by DEM generalization constrained by granularity in combination with fine DEM resolution, which facilitates high-quality rendering." @default.
- W4220797864 created "2022-04-03" @default.
- W4220797864 creator A5057843384 @default.
- W4220797864 date "2022-03-05" @default.
- W4220797864 modified "2023-10-14" @default.
- W4220797864 title "Granularity of Digital Elevation Model and Optimal Level of Detail in Small-Scale Cartographic Relief Presentation" @default.
- W4220797864 cites W1971414292 @default.
- W4220797864 cites W1988563578 @default.
- W4220797864 cites W2003750038 @default.
- W4220797864 cites W2006636507 @default.
- W4220797864 cites W2008746426 @default.
- W4220797864 cites W2038339669 @default.
- W4220797864 cites W2040049981 @default.
- W4220797864 cites W2041972327 @default.
- W4220797864 cites W2045561454 @default.
- W4220797864 cites W2046310150 @default.
- W4220797864 cites W2048459265 @default.
- W4220797864 cites W2062143382 @default.
- W4220797864 cites W2070256531 @default.
- W4220797864 cites W2073018583 @default.
- W4220797864 cites W2087681303 @default.
- W4220797864 cites W2087884757 @default.
- W4220797864 cites W2093856458 @default.
- W4220797864 cites W2121264346 @default.
- W4220797864 cites W2125065112 @default.
- W4220797864 cites W2134248412 @default.
- W4220797864 cites W2160886094 @default.
- W4220797864 cites W2167872510 @default.
- W4220797864 cites W2514301943 @default.
- W4220797864 cites W2620109964 @default.
- W4220797864 cites W2943849101 @default.
- W4220797864 cites W2995743152 @default.
- W4220797864 cites W3049332966 @default.
- W4220797864 cites W3095061895 @default.
- W4220797864 cites W3095179505 @default.
- W4220797864 cites W3154144734 @default.
- W4220797864 cites W3198113718 @default.
- W4220797864 cites W4205900210 @default.
- W4220797864 cites W4229531656 @default.
- W4220797864 cites W644951 @default.
- W4220797864 doi "https://doi.org/10.3390/rs14051270" @default.
- W4220797864 hasPublicationYear "2022" @default.
- W4220797864 type Work @default.
- W4220797864 citedByCount "0" @default.
- W4220797864 crossrefType "journal-article" @default.
- W4220797864 hasAuthorship W4220797864A5057843384 @default.
- W4220797864 hasBestOaLocation W42207978641 @default.
- W4220797864 hasConcept C124101348 @default.
- W4220797864 hasConcept C134306372 @default.
- W4220797864 hasConcept C161840515 @default.
- W4220797864 hasConcept C177148314 @default.
- W4220797864 hasConcept C181843262 @default.
- W4220797864 hasConcept C199360897 @default.
- W4220797864 hasConcept C205649164 @default.
- W4220797864 hasConcept C2524010 @default.
- W4220797864 hasConcept C2778755073 @default.
- W4220797864 hasConcept C2985584371 @default.
- W4220797864 hasConcept C33923547 @default.
- W4220797864 hasConcept C37054046 @default.
- W4220797864 hasConcept C41008148 @default.
- W4220797864 hasConcept C56666940 @default.
- W4220797864 hasConcept C58640448 @default.
- W4220797864 hasConcept C62649853 @default.
- W4220797864 hasConceptScore W4220797864C124101348 @default.
- W4220797864 hasConceptScore W4220797864C134306372 @default.
- W4220797864 hasConceptScore W4220797864C161840515 @default.
- W4220797864 hasConceptScore W4220797864C177148314 @default.
- W4220797864 hasConceptScore W4220797864C181843262 @default.
- W4220797864 hasConceptScore W4220797864C199360897 @default.
- W4220797864 hasConceptScore W4220797864C205649164 @default.
- W4220797864 hasConceptScore W4220797864C2524010 @default.
- W4220797864 hasConceptScore W4220797864C2778755073 @default.
- W4220797864 hasConceptScore W4220797864C2985584371 @default.
- W4220797864 hasConceptScore W4220797864C33923547 @default.
- W4220797864 hasConceptScore W4220797864C37054046 @default.
- W4220797864 hasConceptScore W4220797864C41008148 @default.
- W4220797864 hasConceptScore W4220797864C56666940 @default.
- W4220797864 hasConceptScore W4220797864C58640448 @default.
- W4220797864 hasConceptScore W4220797864C62649853 @default.
- W4220797864 hasFunder F4320324099 @default.
- W4220797864 hasIssue "5" @default.
- W4220797864 hasLocation W42207978641 @default.
- W4220797864 hasLocation W42207978642 @default.
- W4220797864 hasOpenAccess W4220797864 @default.
- W4220797864 hasPrimaryLocation W42207978641 @default.
- W4220797864 hasRelatedWork W2119746558 @default.
- W4220797864 hasRelatedWork W2139505803 @default.
- W4220797864 hasRelatedWork W2903781741 @default.
- W4220797864 hasRelatedWork W3030200589 @default.
- W4220797864 hasRelatedWork W3043572015 @default.
- W4220797864 hasRelatedWork W3047022030 @default.
- W4220797864 hasRelatedWork W3080968762 @default.
- W4220797864 hasRelatedWork W3153593737 @default.
- W4220797864 hasRelatedWork W4327518252 @default.
- W4220797864 hasRelatedWork W769091001 @default.
- W4220797864 hasVolume "14" @default.
- W4220797864 isParatext "false" @default.
- W4220797864 isRetracted "false" @default.