Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220798077> ?p ?o ?g. }
- W4220798077 endingPage "824" @default.
- W4220798077 startingPage "824" @default.
- W4220798077 abstract "Dynamic complex matrix inversion (DCMI) problems frequently arise in the territories of mathematics and engineering, and various recurrent neural network (RNN) models have been reported to effectively find the solutions of the DCMI problems. However, most of the reported works concentrated on solving DCMI problems in ideal no noise environment, and the inevitable noises in reality are not considered. To enhance the robustness of the existing models, an anti-noise parameter-variable zeroing neural network (ANPVZNN) is proposed by introducing a novel activation function (NAF). Both of mathematical analysis and numerical simulation results demonstrate that the proposed ANPVZNN model possesses fixed-time convergence and robustness for solving DCMI problems. Besides, a successful ANPVZNN-based manipulator trajectory tracking example further verifies its robustness and effectiveness in practical applications." @default.
- W4220798077 created "2022-04-03" @default.
- W4220798077 creator A5066842569 @default.
- W4220798077 creator A5073634682 @default.
- W4220798077 creator A5073881751 @default.
- W4220798077 creator A5074703170 @default.
- W4220798077 date "2022-03-07" @default.
- W4220798077 modified "2023-10-01" @default.
- W4220798077 title "Design and Analysis of Anti-Noise Parameter-Variable Zeroing Neural Network for Dynamic Complex Matrix Inversion and Manipulator Trajectory Tracking" @default.
- W4220798077 cites W1964693520 @default.
- W4220798077 cites W1973446088 @default.
- W4220798077 cites W1983931525 @default.
- W4220798077 cites W1985463596 @default.
- W4220798077 cites W1998578040 @default.
- W4220798077 cites W2005104409 @default.
- W4220798077 cites W2073082060 @default.
- W4220798077 cites W2088026800 @default.
- W4220798077 cites W2133702739 @default.
- W4220798077 cites W2138594241 @default.
- W4220798077 cites W2157077261 @default.
- W4220798077 cites W2315072896 @default.
- W4220798077 cites W2344929049 @default.
- W4220798077 cites W2390401404 @default.
- W4220798077 cites W2566161593 @default.
- W4220798077 cites W2586662914 @default.
- W4220798077 cites W2696256157 @default.
- W4220798077 cites W2901538187 @default.
- W4220798077 cites W2903552223 @default.
- W4220798077 cites W2915648089 @default.
- W4220798077 cites W2941603869 @default.
- W4220798077 cites W2945488196 @default.
- W4220798077 cites W2955049691 @default.
- W4220798077 cites W2962776410 @default.
- W4220798077 cites W2986536454 @default.
- W4220798077 cites W2991486793 @default.
- W4220798077 cites W2998566163 @default.
- W4220798077 cites W3011330900 @default.
- W4220798077 cites W3025120277 @default.
- W4220798077 cites W3045439836 @default.
- W4220798077 cites W3092811059 @default.
- W4220798077 cites W3104686123 @default.
- W4220798077 cites W3108822398 @default.
- W4220798077 cites W3112756409 @default.
- W4220798077 cites W3118403460 @default.
- W4220798077 cites W3119566912 @default.
- W4220798077 cites W3120862948 @default.
- W4220798077 cites W3123516373 @default.
- W4220798077 cites W3128723704 @default.
- W4220798077 cites W3175314087 @default.
- W4220798077 cites W3176893347 @default.
- W4220798077 cites W3196353935 @default.
- W4220798077 cites W4206211217 @default.
- W4220798077 cites W4206252394 @default.
- W4220798077 cites W4207001613 @default.
- W4220798077 cites W4213015918 @default.
- W4220798077 cites W4214708851 @default.
- W4220798077 doi "https://doi.org/10.3390/electronics11050824" @default.
- W4220798077 hasPublicationYear "2022" @default.
- W4220798077 type Work @default.
- W4220798077 citedByCount "5" @default.
- W4220798077 countsByYear W42207980772022 @default.
- W4220798077 countsByYear W42207980772023 @default.
- W4220798077 crossrefType "journal-article" @default.
- W4220798077 hasAuthorship W4220798077A5066842569 @default.
- W4220798077 hasAuthorship W4220798077A5073634682 @default.
- W4220798077 hasAuthorship W4220798077A5073881751 @default.
- W4220798077 hasAuthorship W4220798077A5074703170 @default.
- W4220798077 hasBestOaLocation W42207980771 @default.
- W4220798077 hasConcept C104317684 @default.
- W4220798077 hasConcept C109007969 @default.
- W4220798077 hasConcept C121332964 @default.
- W4220798077 hasConcept C1276947 @default.
- W4220798077 hasConcept C13662910 @default.
- W4220798077 hasConcept C147168706 @default.
- W4220798077 hasConcept C151730666 @default.
- W4220798077 hasConcept C154945302 @default.
- W4220798077 hasConcept C185592680 @default.
- W4220798077 hasConcept C1893757 @default.
- W4220798077 hasConcept C2775924081 @default.
- W4220798077 hasConcept C41008148 @default.
- W4220798077 hasConcept C47446073 @default.
- W4220798077 hasConcept C50644808 @default.
- W4220798077 hasConcept C55493867 @default.
- W4220798077 hasConcept C63479239 @default.
- W4220798077 hasConcept C86803240 @default.
- W4220798077 hasConceptScore W4220798077C104317684 @default.
- W4220798077 hasConceptScore W4220798077C109007969 @default.
- W4220798077 hasConceptScore W4220798077C121332964 @default.
- W4220798077 hasConceptScore W4220798077C1276947 @default.
- W4220798077 hasConceptScore W4220798077C13662910 @default.
- W4220798077 hasConceptScore W4220798077C147168706 @default.
- W4220798077 hasConceptScore W4220798077C151730666 @default.
- W4220798077 hasConceptScore W4220798077C154945302 @default.
- W4220798077 hasConceptScore W4220798077C185592680 @default.
- W4220798077 hasConceptScore W4220798077C1893757 @default.
- W4220798077 hasConceptScore W4220798077C2775924081 @default.
- W4220798077 hasConceptScore W4220798077C41008148 @default.
- W4220798077 hasConceptScore W4220798077C47446073 @default.