Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220798611> ?p ?o ?g. }
- W4220798611 endingPage "e1009948" @default.
- W4220798611 startingPage "e1009948" @default.
- W4220798611 abstract "Bayesian methods are widely used in the GWAS meta-analysis. But the considerable consumption in both computing time and memory space poses great challenges for large-scale meta-analyses. In this research, we propose an algorithm named SMetABF to rapidly obtain the optimal ABF in the GWAS meta-analysis, where shotgun stochastic search (SSS) is introduced to improve the Bayesian GWAS meta-analysis framework, MetABF. Simulation studies confirm that SMetABF performs well in both speed and accuracy, compared to exhaustive methods and MCMC. SMetABF is applied to real GWAS datasets to find several essential loci related to Parkinson's disease (PD) and the results support the underlying relationship between PD and other autoimmune disorders. Developed as an R package and a web tool, SMetABF will become a useful tool to integrate different studies and identify more variants associated with complex traits." @default.
- W4220798611 created "2022-04-03" @default.
- W4220798611 creator A5004715600 @default.
- W4220798611 creator A5010776860 @default.
- W4220798611 creator A5016993477 @default.
- W4220798611 creator A5064020188 @default.
- W4220798611 creator A5079845616 @default.
- W4220798611 creator A5089987904 @default.
- W4220798611 date "2022-03-14" @default.
- W4220798611 modified "2023-09-25" @default.
- W4220798611 title "SMetABF: A rapid algorithm for Bayesian GWAS meta-analysis with a large number of studies included" @default.
- W4220798611 cites W1014257459 @default.
- W4220798611 cites W1968886567 @default.
- W4220798611 cites W1979659124 @default.
- W4220798611 cites W1980725116 @default.
- W4220798611 cites W1989784624 @default.
- W4220798611 cites W2011471859 @default.
- W4220798611 cites W2016819506 @default.
- W4220798611 cites W2018907079 @default.
- W4220798611 cites W2040547343 @default.
- W4220798611 cites W2042342193 @default.
- W4220798611 cites W2042421957 @default.
- W4220798611 cites W2047565527 @default.
- W4220798611 cites W2057331441 @default.
- W4220798611 cites W2070659891 @default.
- W4220798611 cites W2087005537 @default.
- W4220798611 cites W2092706317 @default.
- W4220798611 cites W2099610622 @default.
- W4220798611 cites W2109887283 @default.
- W4220798611 cites W2110228129 @default.
- W4220798611 cites W2111957326 @default.
- W4220798611 cites W2116003123 @default.
- W4220798611 cites W2116626531 @default.
- W4220798611 cites W2130187979 @default.
- W4220798611 cites W2135403800 @default.
- W4220798611 cites W2139647754 @default.
- W4220798611 cites W2141459724 @default.
- W4220798611 cites W2143625465 @default.
- W4220798611 cites W2144037754 @default.
- W4220798611 cites W2148641246 @default.
- W4220798611 cites W2151513507 @default.
- W4220798611 cites W2154815319 @default.
- W4220798611 cites W2159675133 @default.
- W4220798611 cites W2164392039 @default.
- W4220798611 cites W2165465283 @default.
- W4220798611 cites W2167780426 @default.
- W4220798611 cites W2438467628 @default.
- W4220798611 cites W2511448696 @default.
- W4220798611 cites W2553123256 @default.
- W4220798611 cites W2559028527 @default.
- W4220798611 cites W2561350048 @default.
- W4220798611 cites W2566450482 @default.
- W4220798611 cites W2571503386 @default.
- W4220798611 cites W2609876203 @default.
- W4220798611 cites W2624247626 @default.
- W4220798611 cites W2725988230 @default.
- W4220798611 cites W2754278602 @default.
- W4220798611 cites W2773164960 @default.
- W4220798611 cites W2781194958 @default.
- W4220798611 cites W2795286808 @default.
- W4220798611 cites W2806899908 @default.
- W4220798611 cites W2901793374 @default.
- W4220798611 cites W2909667856 @default.
- W4220798611 cites W2913467662 @default.
- W4220798611 cites W2937319110 @default.
- W4220798611 cites W2981477552 @default.
- W4220798611 cites W2982511147 @default.
- W4220798611 cites W2982610260 @default.
- W4220798611 cites W2984269047 @default.
- W4220798611 cites W2986932567 @default.
- W4220798611 cites W2993040769 @default.
- W4220798611 cites W2996371470 @default.
- W4220798611 cites W3005296461 @default.
- W4220798611 cites W3087782589 @default.
- W4220798611 cites W3092119378 @default.
- W4220798611 cites W3101090399 @default.
- W4220798611 cites W3124625789 @default.
- W4220798611 cites W3126149304 @default.
- W4220798611 cites W3131764687 @default.
- W4220798611 cites W3140403198 @default.
- W4220798611 cites W3148035120 @default.
- W4220798611 cites W3157032591 @default.
- W4220798611 cites W3183348480 @default.
- W4220798611 cites W3195285310 @default.
- W4220798611 cites W3202209876 @default.
- W4220798611 cites W3207912190 @default.
- W4220798611 cites W3210382439 @default.
- W4220798611 doi "https://doi.org/10.1371/journal.pcbi.1009948" @default.
- W4220798611 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35286307" @default.
- W4220798611 hasPublicationYear "2022" @default.
- W4220798611 type Work @default.
- W4220798611 citedByCount "1" @default.
- W4220798611 countsByYear W42207986112022 @default.
- W4220798611 crossrefType "journal-article" @default.
- W4220798611 hasAuthorship W4220798611A5004715600 @default.
- W4220798611 hasAuthorship W4220798611A5010776860 @default.
- W4220798611 hasAuthorship W4220798611A5016993477 @default.
- W4220798611 hasAuthorship W4220798611A5064020188 @default.