Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220798894> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4220798894 endingPage "2331" @default.
- W4220798894 startingPage "2315" @default.
- W4220798894 abstract "Many machine learning-based methods have been widely applied to Coronary Artery Disease (CAD) and are achieving high accuracy. However, they are black-box methods that are unable to explain the reasons behind the diagnosis. The trade-off between accuracy and interpretability of diagnosis models is important, especially for human disease. This work aims to propose an approach for generating rule-based models for CAD diagnosis. The classification rule generation is modeled as combinatorial optimization problem and it can be solved by means of metaheuristic algorithms. Swarm intelligence algorithms like Equilibrium Optimizer Algorithm (EOA) have demonstrated great performance in solving different optimization problems. Our present study comes up with a Novel Discrete Equilibrium Optimizer Algorithm (NDEOA) for the classification rule generation from training CAD dataset. The proposed NDEOA is a discrete version of EOA, which use a discrete encoding of a particle for representing a classification rule; new discrete operators are also defined for the particle’s position update equation to adapt real operators to discrete space. To evaluate the proposed approach, the real world Z-Alizadeh Sani dataset has been employed. The proposed approach generate a diagnosis model composed of 17 rules, among them, five rules for the class “Normal” and 12 rules for the class “CAD”. In comparison to nine black-box and eight white-box state-of-the-art approaches, the results show that the generated diagnosis model by the proposed approach is more accurate and more interpretable than all white-box models and are competitive to the black-box models. It achieved an overall accuracy, sensitivity and specificity of 93.54%, 80% and 100% respectively; which show that, the proposed approach can be successfully utilized to generate efficient rule-based CAD diagnosis models." @default.
- W4220798894 created "2022-04-03" @default.
- W4220798894 creator A5009903976 @default.
- W4220798894 creator A5036795169 @default.
- W4220798894 creator A5060837054 @default.
- W4220798894 creator A5084017590 @default.
- W4220798894 date "2022-07-21" @default.
- W4220798894 modified "2023-10-16" @default.
- W4220798894 title "An efficient classification rule generation for coronary artery disease diagnosis using a novel discrete equilibrium optimizer algorithm" @default.
- W4220798894 cites W1519113944 @default.
- W4220798894 cites W1971505868 @default.
- W4220798894 cites W2020176002 @default.
- W4220798894 cites W2034371351 @default.
- W4220798894 cites W2104568672 @default.
- W4220798894 cites W2112803241 @default.
- W4220798894 cites W2119315254 @default.
- W4220798894 cites W2125314042 @default.
- W4220798894 cites W2171197094 @default.
- W4220798894 cites W2173730923 @default.
- W4220798894 cites W2499509962 @default.
- W4220798894 cites W2532144455 @default.
- W4220798894 cites W2579725890 @default.
- W4220798894 cites W2751330684 @default.
- W4220798894 cites W2803098482 @default.
- W4220798894 cites W2949767632 @default.
- W4220798894 cites W2953505302 @default.
- W4220798894 cites W2963565281 @default.
- W4220798894 cites W2969993933 @default.
- W4220798894 cites W2985845430 @default.
- W4220798894 cites W2991813872 @default.
- W4220798894 cites W3008627481 @default.
- W4220798894 cites W3196396479 @default.
- W4220798894 cites W4200416837 @default.
- W4220798894 doi "https://doi.org/10.3233/jifs-213257" @default.
- W4220798894 hasPublicationYear "2022" @default.
- W4220798894 type Work @default.
- W4220798894 citedByCount "3" @default.
- W4220798894 countsByYear W42207988942023 @default.
- W4220798894 crossrefType "journal-article" @default.
- W4220798894 hasAuthorship W4220798894A5009903976 @default.
- W4220798894 hasAuthorship W4220798894A5036795169 @default.
- W4220798894 hasAuthorship W4220798894A5060837054 @default.
- W4220798894 hasAuthorship W4220798894A5084017590 @default.
- W4220798894 hasConcept C11413529 @default.
- W4220798894 hasConcept C119857082 @default.
- W4220798894 hasConcept C126255220 @default.
- W4220798894 hasConcept C127413603 @default.
- W4220798894 hasConcept C154945302 @default.
- W4220798894 hasConcept C194789388 @default.
- W4220798894 hasConcept C199639397 @default.
- W4220798894 hasConcept C2781067378 @default.
- W4220798894 hasConcept C33923547 @default.
- W4220798894 hasConcept C41008148 @default.
- W4220798894 hasConcept C85617194 @default.
- W4220798894 hasConcept C94966114 @default.
- W4220798894 hasConceptScore W4220798894C11413529 @default.
- W4220798894 hasConceptScore W4220798894C119857082 @default.
- W4220798894 hasConceptScore W4220798894C126255220 @default.
- W4220798894 hasConceptScore W4220798894C127413603 @default.
- W4220798894 hasConceptScore W4220798894C154945302 @default.
- W4220798894 hasConceptScore W4220798894C194789388 @default.
- W4220798894 hasConceptScore W4220798894C199639397 @default.
- W4220798894 hasConceptScore W4220798894C2781067378 @default.
- W4220798894 hasConceptScore W4220798894C33923547 @default.
- W4220798894 hasConceptScore W4220798894C41008148 @default.
- W4220798894 hasConceptScore W4220798894C85617194 @default.
- W4220798894 hasConceptScore W4220798894C94966114 @default.
- W4220798894 hasIssue "3" @default.
- W4220798894 hasLocation W42207988941 @default.
- W4220798894 hasOpenAccess W4220798894 @default.
- W4220798894 hasPrimaryLocation W42207988941 @default.
- W4220798894 hasRelatedWork W2998015774 @default.
- W4220798894 hasRelatedWork W3006943036 @default.
- W4220798894 hasRelatedWork W3166531723 @default.
- W4220798894 hasRelatedWork W4200511449 @default.
- W4220798894 hasRelatedWork W4206534706 @default.
- W4220798894 hasRelatedWork W4229079080 @default.
- W4220798894 hasRelatedWork W4241566321 @default.
- W4220798894 hasRelatedWork W4385957992 @default.
- W4220798894 hasRelatedWork W4385965371 @default.
- W4220798894 hasRelatedWork W4386025632 @default.
- W4220798894 hasVolume "43" @default.
- W4220798894 isParatext "false" @default.
- W4220798894 isRetracted "false" @default.
- W4220798894 workType "article" @default.