Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220802019> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4220802019 endingPage "14" @default.
- W4220802019 startingPage "1" @default.
- W4220802019 abstract "Considering that collision accidents happen sometimes, it is necessary to predict the collision risk to ensure navigation safety. With the information construction in maritime and the popularity of automatic identification system application, it is more convenient to obtain ship navigation dynamics. How to obtain ship encounter dynamic parameters through automatic identification system information, assess ship collision risk, find out dangerous target ships, and give early warning and guarantee for ship navigation safety, is a problem that scholars have been studying. As an index to measure the degree of ship collision risk, CRI, namely, collision risk index, is usually obtained by calculating ship encounter parameters and comprehensive analysis. There are many factors that affect CRI, and the values of many parameters depend on expert judgment. The corresponding CRI has nonlinear and complex characteristics, which is highly correlated with the time sequence. In order to enhance the prediction accuracy and efficiency, PSO-LSTM neural network is applied in the paper to predict CRI. Experiments show that PSO-LSTM neural network can effectively predict collision risk and provide a reference for navigation safety." @default.
- W4220802019 created "2022-04-03" @default.
- W4220802019 creator A5055733421 @default.
- W4220802019 creator A5062254830 @default.
- W4220802019 creator A5064560776 @default.
- W4220802019 creator A5077247135 @default.
- W4220802019 date "2022-03-24" @default.
- W4220802019 modified "2023-10-16" @default.
- W4220802019 title "The Application of Automatic Identification System Information and PSO-LSTM Neural Network in CRI Prediction" @default.
- W4220802019 cites W2023331968 @default.
- W4220802019 cites W2064675550 @default.
- W4220802019 cites W2073122481 @default.
- W4220802019 cites W2079227271 @default.
- W4220802019 cites W2123631010 @default.
- W4220802019 cites W2160344395 @default.
- W4220802019 cites W2162506159 @default.
- W4220802019 cites W2409160933 @default.
- W4220802019 cites W2514978391 @default.
- W4220802019 cites W2754252319 @default.
- W4220802019 cites W2760265646 @default.
- W4220802019 cites W2883943797 @default.
- W4220802019 cites W2911006170 @default.
- W4220802019 cites W2965834775 @default.
- W4220802019 cites W2971907746 @default.
- W4220802019 cites W2979469459 @default.
- W4220802019 cites W2995347572 @default.
- W4220802019 cites W3009316719 @default.
- W4220802019 cites W3034150780 @default.
- W4220802019 cites W3045340506 @default.
- W4220802019 cites W3047350571 @default.
- W4220802019 cites W3160290278 @default.
- W4220802019 cites W3201323119 @default.
- W4220802019 cites W3202276751 @default.
- W4220802019 cites W4212915669 @default.
- W4220802019 doi "https://doi.org/10.1155/2022/8699322" @default.
- W4220802019 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35371225" @default.
- W4220802019 hasPublicationYear "2022" @default.
- W4220802019 type Work @default.
- W4220802019 citedByCount "1" @default.
- W4220802019 countsByYear W42208020192022 @default.
- W4220802019 crossrefType "journal-article" @default.
- W4220802019 hasAuthorship W4220802019A5055733421 @default.
- W4220802019 hasAuthorship W4220802019A5062254830 @default.
- W4220802019 hasAuthorship W4220802019A5064560776 @default.
- W4220802019 hasAuthorship W4220802019A5077247135 @default.
- W4220802019 hasBestOaLocation W42208020191 @default.
- W4220802019 hasConcept C116834253 @default.
- W4220802019 hasConcept C119857082 @default.
- W4220802019 hasConcept C121704057 @default.
- W4220802019 hasConcept C124101348 @default.
- W4220802019 hasConcept C146997752 @default.
- W4220802019 hasConcept C154945302 @default.
- W4220802019 hasConcept C2780009758 @default.
- W4220802019 hasConcept C38652104 @default.
- W4220802019 hasConcept C41008148 @default.
- W4220802019 hasConcept C50644808 @default.
- W4220802019 hasConcept C59822182 @default.
- W4220802019 hasConcept C86803240 @default.
- W4220802019 hasConceptScore W4220802019C116834253 @default.
- W4220802019 hasConceptScore W4220802019C119857082 @default.
- W4220802019 hasConceptScore W4220802019C121704057 @default.
- W4220802019 hasConceptScore W4220802019C124101348 @default.
- W4220802019 hasConceptScore W4220802019C146997752 @default.
- W4220802019 hasConceptScore W4220802019C154945302 @default.
- W4220802019 hasConceptScore W4220802019C2780009758 @default.
- W4220802019 hasConceptScore W4220802019C38652104 @default.
- W4220802019 hasConceptScore W4220802019C41008148 @default.
- W4220802019 hasConceptScore W4220802019C50644808 @default.
- W4220802019 hasConceptScore W4220802019C59822182 @default.
- W4220802019 hasConceptScore W4220802019C86803240 @default.
- W4220802019 hasFunder F4320321001 @default.
- W4220802019 hasLocation W42208020191 @default.
- W4220802019 hasLocation W42208020192 @default.
- W4220802019 hasLocation W42208020193 @default.
- W4220802019 hasOpenAccess W4220802019 @default.
- W4220802019 hasPrimaryLocation W42208020191 @default.
- W4220802019 hasRelatedWork W2072430733 @default.
- W4220802019 hasRelatedWork W2833879380 @default.
- W4220802019 hasRelatedWork W2961085424 @default.
- W4220802019 hasRelatedWork W3126993983 @default.
- W4220802019 hasRelatedWork W4285260836 @default.
- W4220802019 hasRelatedWork W4286629047 @default.
- W4220802019 hasRelatedWork W4306321456 @default.
- W4220802019 hasRelatedWork W4306674287 @default.
- W4220802019 hasRelatedWork W2189468141 @default.
- W4220802019 hasRelatedWork W4224009465 @default.
- W4220802019 hasVolume "2022" @default.
- W4220802019 isParatext "false" @default.
- W4220802019 isRetracted "false" @default.
- W4220802019 workType "article" @default.