Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220802959> ?p ?o ?g. }
- W4220802959 abstract "Mycobacterium tuberculosis is one of the most consequential human bacterial pathogens, posing a serious challenge to 21st century medicine. A key feature of its pathogenicity is its ability to adapt its transcriptional response to environmental stresses through its transcriptional regulatory network (TRN). While many studies have sought to characterize specific portions of the M. tuberculosis TRN, and some studies have performed system-level analysis, few have been able to provide a network-based model of the TRN that also provides the relative shifts in transcriptional regulator activity triggered by changing environments. Here, we compiled a compendium of nearly 650 publicly available, high quality M. tuberculosis RNA-sequencing data sets and applied an unsupervised machine learning method to obtain a quantitative, top-down TRN. It consists of 80 independently modulated gene sets known as iModulons, 41 of which correspond to known regulons. These iModulons explain 61% of the variance in the organism's transcriptional response. We show that iModulons (i) reveal the function of poorly characterized regulons, (ii) describe the transcriptional shifts that occur during environmental changes such as shifting carbon sources, oxidative stress, and infection events, and (iii) identify intrinsic clusters of regulons that link several important metabolic systems, including lipid, cholesterol, and sulfur metabolism. This transcriptome-wide analysis of the M. tuberculosis TRN informs future research on effective ways to study and manipulate its transcriptional regulation and presents a knowledge-enhanced database of all published high-quality RNA-seq data for this organism to date. IMPORTANCE Mycobacterium tuberculosis H37Rv is one of the world's most impactful pathogens, and a large part of the success of the organism relies on the differential expression of its genes to adapt to its environment. The expression of the organism's genes is driven primarily by its transcriptional regulatory network, and most research on the TRN focuses on identifying and quantifying clusters of coregulated genes known as regulons. While previous studies have relied on molecular measurements, in the manuscript we utilized an alternative technique that performs machine learning to a large data set of transcriptomic data. This approach is less reliant on hypotheses about the role of specific regulatory systems and allows for the discovery of new biological findings for already collected data. A better understanding of the structure of the M. tuberculosis TRN will have important implications in the design of improved therapeutic approaches." @default.
- W4220802959 created "2022-04-03" @default.
- W4220802959 creator A5001633366 @default.
- W4220802959 creator A5011540763 @default.
- W4220802959 creator A5012946533 @default.
- W4220802959 creator A5018695597 @default.
- W4220802959 creator A5026417613 @default.
- W4220802959 creator A5047222181 @default.
- W4220802959 creator A5051097609 @default.
- W4220802959 creator A5077620336 @default.
- W4220802959 creator A5091471112 @default.
- W4220802959 date "2022-04-27" @default.
- W4220802959 modified "2023-10-17" @default.
- W4220802959 title "Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection" @default.
- W4220802959 cites W1241914649 @default.
- W4220802959 cites W1595287493 @default.
- W4220802959 cites W1970470428 @default.
- W4220802959 cites W1971059736 @default.
- W4220802959 cites W1971997781 @default.
- W4220802959 cites W1976656389 @default.
- W4220802959 cites W1979586627 @default.
- W4220802959 cites W1988451138 @default.
- W4220802959 cites W1993006454 @default.
- W4220802959 cites W2003661104 @default.
- W4220802959 cites W2016517200 @default.
- W4220802959 cites W2016538712 @default.
- W4220802959 cites W2023516281 @default.
- W4220802959 cites W2040694642 @default.
- W4220802959 cites W2073347639 @default.
- W4220802959 cites W2081377116 @default.
- W4220802959 cites W2083632051 @default.
- W4220802959 cites W2091859563 @default.
- W4220802959 cites W2093363647 @default.
- W4220802959 cites W2101830136 @default.
- W4220802959 cites W2110926912 @default.
- W4220802959 cites W2123266729 @default.
- W4220802959 cites W2124985265 @default.
- W4220802959 cites W2137586531 @default.
- W4220802959 cites W2138207763 @default.
- W4220802959 cites W2140286346 @default.
- W4220802959 cites W2140354550 @default.
- W4220802959 cites W2140951166 @default.
- W4220802959 cites W2141224535 @default.
- W4220802959 cites W2142046723 @default.
- W4220802959 cites W2145072890 @default.
- W4220802959 cites W2145209917 @default.
- W4220802959 cites W2146813027 @default.
- W4220802959 cites W2148519348 @default.
- W4220802959 cites W2150390148 @default.
- W4220802959 cites W2153514608 @default.
- W4220802959 cites W2158023121 @default.
- W4220802959 cites W2158302225 @default.
- W4220802959 cites W2165446840 @default.
- W4220802959 cites W2170989777 @default.
- W4220802959 cites W2237142366 @default.
- W4220802959 cites W2432815617 @default.
- W4220802959 cites W2462974006 @default.
- W4220802959 cites W2517328182 @default.
- W4220802959 cites W2605897695 @default.
- W4220802959 cites W2738201557 @default.
- W4220802959 cites W2744539557 @default.
- W4220802959 cites W2749464300 @default.
- W4220802959 cites W2753215236 @default.
- W4220802959 cites W2767933358 @default.
- W4220802959 cites W2771168500 @default.
- W4220802959 cites W2789367247 @default.
- W4220802959 cites W2791975541 @default.
- W4220802959 cites W2795307638 @default.
- W4220802959 cites W2892030981 @default.
- W4220802959 cites W2900566045 @default.
- W4220802959 cites W2918529265 @default.
- W4220802959 cites W2949841808 @default.
- W4220802959 cites W2950595506 @default.
- W4220802959 cites W2953060179 @default.
- W4220802959 cites W2965693496 @default.
- W4220802959 cites W2970770935 @default.
- W4220802959 cites W2982849188 @default.
- W4220802959 cites W2987303005 @default.
- W4220802959 cites W2993166334 @default.
- W4220802959 cites W3008906278 @default.
- W4220802959 cites W3019499637 @default.
- W4220802959 cites W3022110845 @default.
- W4220802959 cites W3039562686 @default.
- W4220802959 cites W3091901779 @default.
- W4220802959 cites W3096828292 @default.
- W4220802959 cites W3112376646 @default.
- W4220802959 cites W3113079090 @default.
- W4220802959 cites W3126977719 @default.
- W4220802959 cites W3128033315 @default.
- W4220802959 cites W3165877358 @default.
- W4220802959 cites W3174663170 @default.
- W4220802959 cites W3208712063 @default.
- W4220802959 cites W4225610651 @default.
- W4220802959 cites W4365787616 @default.
- W4220802959 doi "https://doi.org/10.1128/msphere.00033-22" @default.
- W4220802959 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35306876" @default.
- W4220802959 hasPublicationYear "2022" @default.
- W4220802959 type Work @default.
- W4220802959 citedByCount "18" @default.
- W4220802959 countsByYear W42208029592021 @default.