Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220803857> ?p ?o ?g. }
- W4220803857 abstract "Abstract Lymph node involvement increases the risk of breast cancer recurrence. An accurate non-invasive assessment of nodal involvement is valuable in cancer staging, surgical risk, and cost savings. Radiomics has been proposed to pre-operatively predict sentinel lymph node (SLN) status; however, radiomic models are known to be sensitive to acquisition parameters. The purpose of this study was to develop a prediction model for preoperative prediction of SLN metastasis using deep learning-based (DLB) features and compare its predictive performance to state-of-the-art radiomics. Specifically, this study aimed to compare the generalizability of radiomics vs DLB features in an independent test set with dissimilar resolution. Dynamic contrast-enhancement images from 198 patients (67 positive SLNs) were used in this study. Of these subjects, 163 had an in-plane resolution of 0.7 × 0.7 mm 2 , which were randomly divided into a training set (approximately 67%) and a validation set (approximately 33%). The remaining 35 subjects with a different in-plane resolution (0.78 × 0.78 mm 2 ) were treated as independent testing set for generalizability. Two methods were employed: (1) conventional radiomics (CR), and (2) DLB features which replaced hand-curated features with pre-trained VGG-16 features. The threshold determined using the training set was applied to the independent validation and testing dataset. Same feature reduction, feature selection, model creation procedures were used for both approaches. In the validation set (same resolution as training), the DLB model outperformed the CR model (accuracy 83% vs 80%). Furthermore, in the independent testing set of the dissimilar resolution, the DLB model performed markedly better than the CR model (accuracy 77% vs 71%). The predictive performance of the DLB model outperformed the CR model for this task. More interestingly, these improvements were seen particularly in the independent testing set of dissimilar resolution. This could indicate that DLB features can ultimately result in a more generalizable model." @default.
- W4220803857 created "2022-04-03" @default.
- W4220803857 creator A5002184624 @default.
- W4220803857 creator A5024337366 @default.
- W4220803857 creator A5047603679 @default.
- W4220803857 creator A5055923127 @default.
- W4220803857 creator A5071875114 @default.
- W4220803857 creator A5074412599 @default.
- W4220803857 creator A5087411011 @default.
- W4220803857 date "2022-03-07" @default.
- W4220803857 modified "2023-10-10" @default.
- W4220803857 title "Preoperative prediction of lymph node metastasis using deep learning-based features" @default.
- W4220803857 cites W2021917147 @default.
- W4220803857 cites W2051326077 @default.
- W4220803857 cites W2054765225 @default.
- W4220803857 cites W2073092910 @default.
- W4220803857 cites W2087179076 @default.
- W4220803857 cites W2104933073 @default.
- W4220803857 cites W2107167693 @default.
- W4220803857 cites W2118640739 @default.
- W4220803857 cites W2135046866 @default.
- W4220803857 cites W2144354855 @default.
- W4220803857 cites W2551060856 @default.
- W4220803857 cites W2555871496 @default.
- W4220803857 cites W2586066208 @default.
- W4220803857 cites W2616461360 @default.
- W4220803857 cites W2734369741 @default.
- W4220803857 cites W2747930650 @default.
- W4220803857 cites W2755477685 @default.
- W4220803857 cites W2762119375 @default.
- W4220803857 cites W2762481118 @default.
- W4220803857 cites W2787845149 @default.
- W4220803857 cites W2789242863 @default.
- W4220803857 cites W2796928390 @default.
- W4220803857 cites W2809254203 @default.
- W4220803857 cites W2809848353 @default.
- W4220803857 cites W2889261422 @default.
- W4220803857 cites W2900955936 @default.
- W4220803857 cites W2901812737 @default.
- W4220803857 cites W2914584363 @default.
- W4220803857 cites W2933133867 @default.
- W4220803857 cites W2940302122 @default.
- W4220803857 cites W2941490313 @default.
- W4220803857 cites W2950535890 @default.
- W4220803857 cites W2957759768 @default.
- W4220803857 cites W2979078804 @default.
- W4220803857 cites W2989596723 @default.
- W4220803857 cites W2990910383 @default.
- W4220803857 cites W2992369104 @default.
- W4220803857 cites W2992412398 @default.
- W4220803857 cites W2995570318 @default.
- W4220803857 cites W2997339445 @default.
- W4220803857 cites W3044645766 @default.
- W4220803857 cites W3106266685 @default.
- W4220803857 doi "https://doi.org/10.1186/s42492-022-00104-5" @default.
- W4220803857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35254557" @default.
- W4220803857 hasPublicationYear "2022" @default.
- W4220803857 type Work @default.
- W4220803857 citedByCount "6" @default.
- W4220803857 countsByYear W42208038572022 @default.
- W4220803857 countsByYear W42208038572023 @default.
- W4220803857 crossrefType "journal-article" @default.
- W4220803857 hasAuthorship W4220803857A5002184624 @default.
- W4220803857 hasAuthorship W4220803857A5024337366 @default.
- W4220803857 hasAuthorship W4220803857A5047603679 @default.
- W4220803857 hasAuthorship W4220803857A5055923127 @default.
- W4220803857 hasAuthorship W4220803857A5071875114 @default.
- W4220803857 hasAuthorship W4220803857A5074412599 @default.
- W4220803857 hasAuthorship W4220803857A5087411011 @default.
- W4220803857 hasBestOaLocation W42208038571 @default.
- W4220803857 hasConcept C105795698 @default.
- W4220803857 hasConcept C121608353 @default.
- W4220803857 hasConcept C126322002 @default.
- W4220803857 hasConcept C126838900 @default.
- W4220803857 hasConcept C153180895 @default.
- W4220803857 hasConcept C154945302 @default.
- W4220803857 hasConcept C169903167 @default.
- W4220803857 hasConcept C177264268 @default.
- W4220803857 hasConcept C199360897 @default.
- W4220803857 hasConcept C27158222 @default.
- W4220803857 hasConcept C2778559731 @default.
- W4220803857 hasConcept C2780212769 @default.
- W4220803857 hasConcept C33923547 @default.
- W4220803857 hasConcept C41008148 @default.
- W4220803857 hasConcept C530470458 @default.
- W4220803857 hasConcept C71924100 @default.
- W4220803857 hasConceptScore W4220803857C105795698 @default.
- W4220803857 hasConceptScore W4220803857C121608353 @default.
- W4220803857 hasConceptScore W4220803857C126322002 @default.
- W4220803857 hasConceptScore W4220803857C126838900 @default.
- W4220803857 hasConceptScore W4220803857C153180895 @default.
- W4220803857 hasConceptScore W4220803857C154945302 @default.
- W4220803857 hasConceptScore W4220803857C169903167 @default.
- W4220803857 hasConceptScore W4220803857C177264268 @default.
- W4220803857 hasConceptScore W4220803857C199360897 @default.
- W4220803857 hasConceptScore W4220803857C27158222 @default.
- W4220803857 hasConceptScore W4220803857C2778559731 @default.
- W4220803857 hasConceptScore W4220803857C2780212769 @default.
- W4220803857 hasConceptScore W4220803857C33923547 @default.
- W4220803857 hasConceptScore W4220803857C41008148 @default.