Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220805210> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4220805210 endingPage "103662" @default.
- W4220805210 startingPage "103662" @default.
- W4220805210 abstract "Rapid diagnosis of the Covid-19 disease is the best way to prevent infection. In this paper, it is proposed to use machine learning methods to aid diagnoses quickly Covid-19 and focused on effect of several features on classification accuracy. In the proposed method 746 axial computed tomography (CT) images of the lung; 349 Covid-19 (positives) and 397 non-Covid-19 (negative) are used. Gray-level texture, shape and first order statistical features were extracted from the images. The feature vector for model training is constructed with one feature group or combination of more than one group. We then classified with Support Vector Machine, Random Forest, k-nearest neighbor and XGBoost classifier models. The hyperparameter of the models were controlled by the tuning test. Experimental results obtained with 10-fold cross-validation. The results of cross-validation verified with the additionally independent test. The best overall accuracy was 98.65% with first order statistics features classified with XGBoost. In the gray level features, the best individual results given by GLSZM as 81.25%, and the best combination result is with GLDM, GLRLM and GLSZM features as 85.52%. An important finding of this paper is that, for Covid-19 classification, the shape and first order statistics features are more valuable than gray level features. The proposed results compared with the literature studies under some Covid-19 dataset for accuracy, precision, sensitivity and F1-score metrics. Also, the literature studies which used the different Covid-19 dataset were compared with the proposed study. Our results have the significant superiority when compared with the literature studies." @default.
- W4220805210 created "2022-04-03" @default.
- W4220805210 creator A5006334862 @default.
- W4220805210 creator A5062149542 @default.
- W4220805210 date "2022-07-01" @default.
- W4220805210 modified "2023-10-14" @default.
- W4220805210 title "Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study" @default.
- W4220805210 cites W2313422996 @default.
- W4220805210 cites W2767128594 @default.
- W4220805210 cites W3003228332 @default.
- W4220805210 cites W3016610966 @default.
- W4220805210 cites W3019980738 @default.
- W4220805210 cites W3021820492 @default.
- W4220805210 cites W3024005803 @default.
- W4220805210 cites W3028231159 @default.
- W4220805210 cites W3037538421 @default.
- W4220805210 cites W3040411764 @default.
- W4220805210 cites W3046722451 @default.
- W4220805210 cites W3049516045 @default.
- W4220805210 cites W3080635718 @default.
- W4220805210 cites W3129350780 @default.
- W4220805210 cites W3129576291 @default.
- W4220805210 cites W3133191822 @default.
- W4220805210 cites W3135243128 @default.
- W4220805210 cites W3150035760 @default.
- W4220805210 cites W3154663234 @default.
- W4220805210 cites W3168156287 @default.
- W4220805210 cites W3207548384 @default.
- W4220805210 cites W4200226120 @default.
- W4220805210 cites W4225829987 @default.
- W4220805210 doi "https://doi.org/10.1016/j.bspc.2022.103662" @default.
- W4220805210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35350595" @default.
- W4220805210 hasPublicationYear "2022" @default.
- W4220805210 type Work @default.
- W4220805210 citedByCount "14" @default.
- W4220805210 countsByYear W42208052102022 @default.
- W4220805210 countsByYear W42208052102023 @default.
- W4220805210 crossrefType "journal-article" @default.
- W4220805210 hasAuthorship W4220805210A5006334862 @default.
- W4220805210 hasAuthorship W4220805210A5062149542 @default.
- W4220805210 hasBestOaLocation W42208052102 @default.
- W4220805210 hasConcept C12267149 @default.
- W4220805210 hasConcept C142724271 @default.
- W4220805210 hasConcept C153180895 @default.
- W4220805210 hasConcept C154945302 @default.
- W4220805210 hasConcept C169258074 @default.
- W4220805210 hasConcept C27181475 @default.
- W4220805210 hasConcept C2779134260 @default.
- W4220805210 hasConcept C3008058167 @default.
- W4220805210 hasConcept C41008148 @default.
- W4220805210 hasConcept C524204448 @default.
- W4220805210 hasConcept C52622490 @default.
- W4220805210 hasConcept C64869954 @default.
- W4220805210 hasConcept C71924100 @default.
- W4220805210 hasConcept C8642999 @default.
- W4220805210 hasConcept C95623464 @default.
- W4220805210 hasConceptScore W4220805210C12267149 @default.
- W4220805210 hasConceptScore W4220805210C142724271 @default.
- W4220805210 hasConceptScore W4220805210C153180895 @default.
- W4220805210 hasConceptScore W4220805210C154945302 @default.
- W4220805210 hasConceptScore W4220805210C169258074 @default.
- W4220805210 hasConceptScore W4220805210C27181475 @default.
- W4220805210 hasConceptScore W4220805210C2779134260 @default.
- W4220805210 hasConceptScore W4220805210C3008058167 @default.
- W4220805210 hasConceptScore W4220805210C41008148 @default.
- W4220805210 hasConceptScore W4220805210C524204448 @default.
- W4220805210 hasConceptScore W4220805210C52622490 @default.
- W4220805210 hasConceptScore W4220805210C64869954 @default.
- W4220805210 hasConceptScore W4220805210C71924100 @default.
- W4220805210 hasConceptScore W4220805210C8642999 @default.
- W4220805210 hasConceptScore W4220805210C95623464 @default.
- W4220805210 hasLocation W42208052101 @default.
- W4220805210 hasLocation W42208052102 @default.
- W4220805210 hasLocation W42208052103 @default.
- W4220805210 hasOpenAccess W4220805210 @default.
- W4220805210 hasPrimaryLocation W42208052101 @default.
- W4220805210 hasRelatedWork W2041636156 @default.
- W4220805210 hasRelatedWork W2126100045 @default.
- W4220805210 hasRelatedWork W2160451891 @default.
- W4220805210 hasRelatedWork W2275058042 @default.
- W4220805210 hasRelatedWork W2336974148 @default.
- W4220805210 hasRelatedWork W2381773606 @default.
- W4220805210 hasRelatedWork W2776601773 @default.
- W4220805210 hasRelatedWork W2964383635 @default.
- W4220805210 hasRelatedWork W2187500075 @default.
- W4220805210 hasRelatedWork W2345184372 @default.
- W4220805210 hasVolume "76" @default.
- W4220805210 isParatext "false" @default.
- W4220805210 isRetracted "false" @default.
- W4220805210 workType "article" @default.