Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220806323> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4220806323 endingPage "66" @default.
- W4220806323 startingPage "53" @default.
- W4220806323 abstract "Federated Edge Learning (FEEL) is a promising distributed machine learning paradigm in the era of edge intelligence, which supports to learn the knowledge in the dataset on the premise of protecting users’ privacy. However, this learning paradigm has a big defect. As the training process is carried out at the user end and is very power-consuming, the learning task is a serious challenge for mobile devices with limited battery capacity, which may also hinders the implementation of FEEL. In practical applications, FEEL usually needs to comply with the requirements for training delay and model performance, and may also be affected by the inter-cell interference which is common in the cellular networks. However, the current works only consider the demand for training delay. In this paper, we consider the implementation of FEEL in a general cellular network, and propose an empirical assumption to characterize the relationship between model performance and training data, based on which, a workload constraint is added to the formulated problem to guarantee the model performance. For the formulated problem that contains a summation term of integral variables and an interference term with complex structure at the denominator of the objective function, we propose a device scheduling and channel allocation strategy, also called double-greedy strategy, to obtain its suboptimal solution with low computational complexity. Simulation results verify the advancement of our proposed strategy relative to the existing works, that is, achieving the best energy efficiency on the premise of ensuring the model performance. This advancement makes our strategy more flexible to satisfy the possible various requirements of service providers for model performance." @default.
- W4220806323 created "2022-04-03" @default.
- W4220806323 creator A5006819425 @default.
- W4220806323 creator A5050302142 @default.
- W4220806323 creator A5065117485 @default.
- W4220806323 date "2022-05-01" @default.
- W4220806323 modified "2023-09-26" @default.
- W4220806323 title "Device scheduling and channel allocation for energy-efficient Federated Edge Learning" @default.
- W4220806323 cites W2024416483 @default.
- W4220806323 cites W2036265926 @default.
- W4220806323 cites W2082011829 @default.
- W4220806323 cites W2154782861 @default.
- W4220806323 cites W2167095716 @default.
- W4220806323 cites W2482293012 @default.
- W4220806323 cites W2512971201 @default.
- W4220806323 cites W2891123429 @default.
- W4220806323 cites W2897066997 @default.
- W4220806323 cites W2912213068 @default.
- W4220806323 cites W2919115771 @default.
- W4220806323 cites W2951832089 @default.
- W4220806323 cites W2962804345 @default.
- W4220806323 cites W2963318081 @default.
- W4220806323 cites W2963793432 @default.
- W4220806323 cites W2964015972 @default.
- W4220806323 cites W2972882814 @default.
- W4220806323 cites W2975156709 @default.
- W4220806323 cites W2980734915 @default.
- W4220806323 cites W2981138228 @default.
- W4220806323 cites W3004277316 @default.
- W4220806323 cites W3034137700 @default.
- W4220806323 cites W3037582816 @default.
- W4220806323 cites W3094747607 @default.
- W4220806323 cites W3101445254 @default.
- W4220806323 cites W3105072513 @default.
- W4220806323 cites W3138760940 @default.
- W4220806323 cites W3178176830 @default.
- W4220806323 doi "https://doi.org/10.1016/j.comcom.2022.03.008" @default.
- W4220806323 hasPublicationYear "2022" @default.
- W4220806323 type Work @default.
- W4220806323 citedByCount "0" @default.
- W4220806323 crossrefType "journal-article" @default.
- W4220806323 hasAuthorship W4220806323A5006819425 @default.
- W4220806323 hasAuthorship W4220806323A5050302142 @default.
- W4220806323 hasAuthorship W4220806323A5065117485 @default.
- W4220806323 hasConcept C111919701 @default.
- W4220806323 hasConcept C120314980 @default.
- W4220806323 hasConcept C126255220 @default.
- W4220806323 hasConcept C138236772 @default.
- W4220806323 hasConcept C138885662 @default.
- W4220806323 hasConcept C154945302 @default.
- W4220806323 hasConcept C162307627 @default.
- W4220806323 hasConcept C206729178 @default.
- W4220806323 hasConcept C2778023277 @default.
- W4220806323 hasConcept C2778476105 @default.
- W4220806323 hasConcept C33923547 @default.
- W4220806323 hasConcept C41008148 @default.
- W4220806323 hasConcept C41895202 @default.
- W4220806323 hasConcept C79974875 @default.
- W4220806323 hasConceptScore W4220806323C111919701 @default.
- W4220806323 hasConceptScore W4220806323C120314980 @default.
- W4220806323 hasConceptScore W4220806323C126255220 @default.
- W4220806323 hasConceptScore W4220806323C138236772 @default.
- W4220806323 hasConceptScore W4220806323C138885662 @default.
- W4220806323 hasConceptScore W4220806323C154945302 @default.
- W4220806323 hasConceptScore W4220806323C162307627 @default.
- W4220806323 hasConceptScore W4220806323C206729178 @default.
- W4220806323 hasConceptScore W4220806323C2778023277 @default.
- W4220806323 hasConceptScore W4220806323C2778476105 @default.
- W4220806323 hasConceptScore W4220806323C33923547 @default.
- W4220806323 hasConceptScore W4220806323C41008148 @default.
- W4220806323 hasConceptScore W4220806323C41895202 @default.
- W4220806323 hasConceptScore W4220806323C79974875 @default.
- W4220806323 hasLocation W42208063231 @default.
- W4220806323 hasOpenAccess W4220806323 @default.
- W4220806323 hasPrimaryLocation W42208063231 @default.
- W4220806323 hasRelatedWork W1882733036 @default.
- W4220806323 hasRelatedWork W1992741870 @default.
- W4220806323 hasRelatedWork W2109998134 @default.
- W4220806323 hasRelatedWork W2160425906 @default.
- W4220806323 hasRelatedWork W2546696010 @default.
- W4220806323 hasRelatedWork W2551948844 @default.
- W4220806323 hasRelatedWork W2979596628 @default.
- W4220806323 hasRelatedWork W4313145167 @default.
- W4220806323 hasRelatedWork W4367047246 @default.
- W4220806323 hasRelatedWork W4376106090 @default.
- W4220806323 hasVolume "189" @default.
- W4220806323 isParatext "false" @default.
- W4220806323 isRetracted "false" @default.
- W4220806323 workType "article" @default.