Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220808300> ?p ?o ?g. }
- W4220808300 endingPage "3331" @default.
- W4220808300 startingPage "3315" @default.
- W4220808300 abstract "The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images.The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth.Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00.A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis." @default.
- W4220808300 created "2022-04-03" @default.
- W4220808300 creator A5012941908 @default.
- W4220808300 creator A5018236954 @default.
- W4220808300 creator A5019234590 @default.
- W4220808300 creator A5029196305 @default.
- W4220808300 creator A5067679392 @default.
- W4220808300 creator A5077228960 @default.
- W4220808300 creator A5089152028 @default.
- W4220808300 date "2022-03-23" @default.
- W4220808300 modified "2023-09-26" @default.
- W4220808300 title "A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET–CT images: Initial analysis" @default.
- W4220808300 cites W1892105223 @default.
- W4220808300 cites W1968597302 @default.
- W4220808300 cites W1971742690 @default.
- W4220808300 cites W2026616100 @default.
- W4220808300 cites W2027455494 @default.
- W4220808300 cites W2065565905 @default.
- W4220808300 cites W2088783247 @default.
- W4220808300 cites W2106671991 @default.
- W4220808300 cites W2107665951 @default.
- W4220808300 cites W2328176404 @default.
- W4220808300 cites W2329122269 @default.
- W4220808300 cites W2409649574 @default.
- W4220808300 cites W2466817976 @default.
- W4220808300 cites W2558363236 @default.
- W4220808300 cites W2566749675 @default.
- W4220808300 cites W2755129255 @default.
- W4220808300 cites W2763355946 @default.
- W4220808300 cites W2767128594 @default.
- W4220808300 cites W2769898966 @default.
- W4220808300 cites W2781993955 @default.
- W4220808300 cites W2791373118 @default.
- W4220808300 cites W2797011296 @default.
- W4220808300 cites W2801270322 @default.
- W4220808300 cites W2808998295 @default.
- W4220808300 cites W2809674704 @default.
- W4220808300 cites W2883150385 @default.
- W4220808300 cites W2885044244 @default.
- W4220808300 cites W2886943560 @default.
- W4220808300 cites W2890546723 @default.
- W4220808300 cites W2921857414 @default.
- W4220808300 cites W2921980972 @default.
- W4220808300 cites W2950026246 @default.
- W4220808300 cites W2950086191 @default.
- W4220808300 cites W2950535890 @default.
- W4220808300 cites W2953665288 @default.
- W4220808300 cites W2954093393 @default.
- W4220808300 cites W2972019069 @default.
- W4220808300 cites W2972634229 @default.
- W4220808300 cites W2996647866 @default.
- W4220808300 cites W3002985324 @default.
- W4220808300 cites W3022740784 @default.
- W4220808300 cites W3032938107 @default.
- W4220808300 cites W3035819652 @default.
- W4220808300 cites W3038062368 @default.
- W4220808300 cites W3046171905 @default.
- W4220808300 cites W3047861005 @default.
- W4220808300 cites W3048802680 @default.
- W4220808300 cites W3049400721 @default.
- W4220808300 cites W3093274662 @default.
- W4220808300 cites W3094046634 @default.
- W4220808300 cites W3101024103 @default.
- W4220808300 cites W3110479362 @default.
- W4220808300 cites W3118247837 @default.
- W4220808300 cites W3156641481 @default.
- W4220808300 cites W3175695765 @default.
- W4220808300 cites W4214920103 @default.
- W4220808300 cites W78661028 @default.
- W4220808300 cites W929000763 @default.
- W4220808300 doi "https://doi.org/10.1007/s12350-022-02927-4" @default.
- W4220808300 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35322380" @default.
- W4220808300 hasPublicationYear "2022" @default.
- W4220808300 type Work @default.
- W4220808300 citedByCount "5" @default.
- W4220808300 countsByYear W42208083002022 @default.
- W4220808300 countsByYear W42208083002023 @default.
- W4220808300 crossrefType "journal-article" @default.
- W4220808300 hasAuthorship W4220808300A5012941908 @default.
- W4220808300 hasAuthorship W4220808300A5018236954 @default.
- W4220808300 hasAuthorship W4220808300A5019234590 @default.
- W4220808300 hasAuthorship W4220808300A5029196305 @default.
- W4220808300 hasAuthorship W4220808300A5067679392 @default.
- W4220808300 hasAuthorship W4220808300A5077228960 @default.
- W4220808300 hasAuthorship W4220808300A5089152028 @default.
- W4220808300 hasBestOaLocation W42208083001 @default.
- W4220808300 hasConcept C126322002 @default.
- W4220808300 hasConcept C126838900 @default.
- W4220808300 hasConcept C154945302 @default.
- W4220808300 hasConcept C19527891 @default.
- W4220808300 hasConcept C2775842073 @default.
- W4220808300 hasConcept C2777818683 @default.
- W4220808300 hasConcept C2779980429 @default.
- W4220808300 hasConcept C2908761598 @default.
- W4220808300 hasConcept C2989005 @default.
- W4220808300 hasConcept C3020132585 @default.
- W4220808300 hasConcept C41008148 @default.
- W4220808300 hasConcept C544519230 @default.