Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220809634> ?p ?o ?g. }
- W4220809634 endingPage "106755" @default.
- W4220809634 startingPage "106755" @default.
- W4220809634 abstract "Skin cancer is the most common malignancy in whites accounting for about one third of all cancers diagnosed per year. Portable Raman spectroscopy setups for skin cancer optical biopsy are utilized to detect tumors based on their spectral features caused by the comparative presence of different chemical components. However, low signal-to-noise ratio in such systems may prevent accurate tumors classification. Thus, there is a challenge to develop methods for efficient skin tumors classification.We compare the performance of convolutional neural networks and the projection on latent structures with discriminant analysis for discriminating skin cancer using the analysis of Raman spectra with a high autofluorescence background stimulated by a 785 nm laser. We have registered the spectra of 617 cases of skin neoplasms (615 patients, 70 melanomas, 122 basal cell carcinomas, 12 squamous cell carcinomas and 413 benign tumors) in vivo with a portable Raman setup and created classification models both for convolutional neural networks and projection on latent structures approaches. To check the classification models stability, a 10-fold cross-validation was performed for all created models. To avoid models overfitting, the data was divided into a training set (80% of spectral dataset) and a test set (20% of spectral dataset).The results for different classification tasks demonstrate that the convolutional neural networks significantly (p<0.01) outperforms the projection on latent structures. For the convolutional neural networks implementation we obtained ROC AUCs of 0.96 (0.94 - 0.97; 95% CI), 0.90 (0.85-0.94; 95% CI), and 0.92 (0.87 - 0.97; 95% CI) for classifying a) malignant vs benign tumors, b) melanomas vs pigmented tumors and c) melanomas vs seborrheic keratosis respectively.The performance of the convolutional neural networks classification of skin tumors based on Raman spectra analysis is higher or comparable to the accuracy provided by trained dermatologists. The increased accuracy with the convolutional neural networks implementation is due to a more precise accounting of low intensity Raman bands in the intense autofluorescence background. The achieved high performance of skin tumors classifications with convolutional neural networks analysis opens a possibility for wide implementation of Raman setups in clinical setting." @default.
- W4220809634 created "2022-04-03" @default.
- W4220809634 creator A5013754227 @default.
- W4220809634 creator A5055967933 @default.
- W4220809634 creator A5075452472 @default.
- W4220809634 creator A5075638427 @default.
- W4220809634 creator A5076994119 @default.
- W4220809634 creator A5081657205 @default.
- W4220809634 date "2022-06-01" @default.
- W4220809634 modified "2023-09-23" @default.
- W4220809634 title "Classification of skin cancer using convolutional neural networks analysis of Raman spectra" @default.
- W4220809634 cites W1995001633 @default.
- W4220809634 cites W2000295462 @default.
- W4220809634 cites W2005636037 @default.
- W4220809634 cites W2006617902 @default.
- W4220809634 cites W2021873216 @default.
- W4220809634 cites W2025528938 @default.
- W4220809634 cites W2033526929 @default.
- W4220809634 cites W2098722265 @default.
- W4220809634 cites W2102150307 @default.
- W4220809634 cites W2128756499 @default.
- W4220809634 cites W2148887465 @default.
- W4220809634 cites W2158734599 @default.
- W4220809634 cites W2160824456 @default.
- W4220809634 cites W2226029907 @default.
- W4220809634 cites W2289903853 @default.
- W4220809634 cites W2528713788 @default.
- W4220809634 cites W2581082771 @default.
- W4220809634 cites W2610037549 @default.
- W4220809634 cites W2745104503 @default.
- W4220809634 cites W2781246871 @default.
- W4220809634 cites W2799883523 @default.
- W4220809634 cites W2811312448 @default.
- W4220809634 cites W2885046370 @default.
- W4220809634 cites W2892600563 @default.
- W4220809634 cites W2905498291 @default.
- W4220809634 cites W2907416084 @default.
- W4220809634 cites W2916096286 @default.
- W4220809634 cites W2944064124 @default.
- W4220809634 cites W2969309273 @default.
- W4220809634 cites W2982482221 @default.
- W4220809634 cites W2984412793 @default.
- W4220809634 cites W2986609444 @default.
- W4220809634 cites W2987854584 @default.
- W4220809634 cites W2999417355 @default.
- W4220809634 cites W3000396219 @default.
- W4220809634 cites W3014321973 @default.
- W4220809634 cites W3023925071 @default.
- W4220809634 cites W3029834215 @default.
- W4220809634 cites W3036832556 @default.
- W4220809634 cites W3039595993 @default.
- W4220809634 cites W3091942970 @default.
- W4220809634 cites W3097318511 @default.
- W4220809634 cites W3097337942 @default.
- W4220809634 cites W3126194146 @default.
- W4220809634 cites W3126486816 @default.
- W4220809634 cites W3129139042 @default.
- W4220809634 cites W3138323391 @default.
- W4220809634 cites W3161999894 @default.
- W4220809634 cites W3164433695 @default.
- W4220809634 cites W3185916020 @default.
- W4220809634 cites W3187096419 @default.
- W4220809634 cites W3196811283 @default.
- W4220809634 cites W3196827207 @default.
- W4220809634 cites W3198214009 @default.
- W4220809634 cites W3204178249 @default.
- W4220809634 cites W3205664230 @default.
- W4220809634 cites W3208503522 @default.
- W4220809634 cites W4226483884 @default.
- W4220809634 doi "https://doi.org/10.1016/j.cmpb.2022.106755" @default.
- W4220809634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35349907" @default.
- W4220809634 hasPublicationYear "2022" @default.
- W4220809634 type Work @default.
- W4220809634 citedByCount "21" @default.
- W4220809634 countsByYear W42208096342022 @default.
- W4220809634 countsByYear W42208096342023 @default.
- W4220809634 crossrefType "journal-article" @default.
- W4220809634 hasAuthorship W4220809634A5013754227 @default.
- W4220809634 hasAuthorship W4220809634A5055967933 @default.
- W4220809634 hasAuthorship W4220809634A5075452472 @default.
- W4220809634 hasAuthorship W4220809634A5075638427 @default.
- W4220809634 hasAuthorship W4220809634A5076994119 @default.
- W4220809634 hasAuthorship W4220809634A5081657205 @default.
- W4220809634 hasConcept C11413529 @default.
- W4220809634 hasConcept C121608353 @default.
- W4220809634 hasConcept C126322002 @default.
- W4220809634 hasConcept C142724271 @default.
- W4220809634 hasConcept C153180895 @default.
- W4220809634 hasConcept C154945302 @default.
- W4220809634 hasConcept C169903167 @default.
- W4220809634 hasConcept C2778804307 @default.
- W4220809634 hasConcept C3019992690 @default.
- W4220809634 hasConcept C41008148 @default.
- W4220809634 hasConcept C57493831 @default.
- W4220809634 hasConcept C58489278 @default.
- W4220809634 hasConcept C69738355 @default.
- W4220809634 hasConcept C71924100 @default.
- W4220809634 hasConcept C81363708 @default.