Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220809637> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4220809637 endingPage "44" @default.
- W4220809637 startingPage "44" @default.
- W4220809637 abstract "INTRODUCTION: Magnetoencephalography (MEG) is a useful component of a pre-surgical evaluation. Due to its high spatiotemporal resolution, MEG often provides nonredundant information to the clinician when forming hypotheses about the epileptogenic zone (EZ). With the increasing utilization of stereo-EEG (sEEG), MEG clusters are more commonly used as an sEEG electrode target. However, there are no pre-defined features of an MEG cluster that predict whether it is representative of intracranial EEG interictal or ictal activity, which limits optimal utilization of MEG in surgical planning. METHODS: We retrospectively analyzed patients who had an MEG study since it became available at our center (2017-2021). Patients were included if they had a positive MEG prior to an sEEG evaluation. MEG dipoles and sEEG electrodes were reconstructed in the same coordinate space to calculate overlap between electrodes and MEG clusters, and to quantify MEG cluster characteristics. MEG cluster features including brain region, stability (degree to which dipoles are parallel), tightness (density of dipole distribution), and number of dipoles were included in a binary classifier to predict ictal and interictal activity. RESULTS: Across 39 included patients, 13% of sEEG electrodes sampled MEG clusters. In these contacts, there were higher rates of ictal (43.22% vs 17.36%, p < 0.001) and interictal activity (39.63% vs 18.93%, p < 0.001) compared to electrodes not sampling MEG clusters. For contacts sampling the MEG cluster, binary classification predicted ictal activity with 76.7% accuracy compared to 54.4% in shuffled data (c-statistic = 0.816) , while interictal activity was predicted accurately at 68.2% compared to 57.8% in shuffled data (c-statistic = 0.672) . Further analysis of individual characteristics showed that cluster stability contributed most to the model’s accuracy (c-statistic = 0.773), whereas tightness (c-statistic = 0.701) and number of spikes (c-statistic = 0.692) contributed to a lesser extent. Brain region (c-statistic = 0.553) was not predictive of ictal activity. CONCLUSION: MEG cluster stability, tightness, and number of dipoles can be used to predict ictal activity. Quantitative analysis of these features may be useful for prospective planning of intracranial diagnostic implants." @default.
- W4220809637 created "2022-04-03" @default.
- W4220809637 creator A5006655560 @default.
- W4220809637 creator A5012755719 @default.
- W4220809637 creator A5013491544 @default.
- W4220809637 creator A5020888903 @default.
- W4220809637 creator A5052770525 @default.
- W4220809637 creator A5063430402 @default.
- W4220809637 creator A5064007787 @default.
- W4220809637 creator A5082661128 @default.
- W4220809637 date "2022-03-01" @default.
- W4220809637 modified "2023-10-18" @default.
- W4220809637 title "149 Predictive Value of Magnetoencephalography to Guide Intracranial Implant Strategy" @default.
- W4220809637 doi "https://doi.org/10.1227/neu.0000000000001880_149" @default.
- W4220809637 hasPublicationYear "2022" @default.
- W4220809637 type Work @default.
- W4220809637 citedByCount "0" @default.
- W4220809637 crossrefType "journal-article" @default.
- W4220809637 hasAuthorship W4220809637A5006655560 @default.
- W4220809637 hasAuthorship W4220809637A5012755719 @default.
- W4220809637 hasAuthorship W4220809637A5013491544 @default.
- W4220809637 hasAuthorship W4220809637A5020888903 @default.
- W4220809637 hasAuthorship W4220809637A5052770525 @default.
- W4220809637 hasAuthorship W4220809637A5063430402 @default.
- W4220809637 hasAuthorship W4220809637A5064007787 @default.
- W4220809637 hasAuthorship W4220809637A5082661128 @default.
- W4220809637 hasConcept C118552586 @default.
- W4220809637 hasConcept C126838900 @default.
- W4220809637 hasConcept C17755696 @default.
- W4220809637 hasConcept C2780803581 @default.
- W4220809637 hasConcept C2989005 @default.
- W4220809637 hasConcept C522805319 @default.
- W4220809637 hasConcept C556910895 @default.
- W4220809637 hasConcept C71924100 @default.
- W4220809637 hasConcept C98254291 @default.
- W4220809637 hasConceptScore W4220809637C118552586 @default.
- W4220809637 hasConceptScore W4220809637C126838900 @default.
- W4220809637 hasConceptScore W4220809637C17755696 @default.
- W4220809637 hasConceptScore W4220809637C2780803581 @default.
- W4220809637 hasConceptScore W4220809637C2989005 @default.
- W4220809637 hasConceptScore W4220809637C522805319 @default.
- W4220809637 hasConceptScore W4220809637C556910895 @default.
- W4220809637 hasConceptScore W4220809637C71924100 @default.
- W4220809637 hasConceptScore W4220809637C98254291 @default.
- W4220809637 hasIssue "Supplement_1" @default.
- W4220809637 hasLocation W42208096371 @default.
- W4220809637 hasOpenAccess W4220809637 @default.
- W4220809637 hasPrimaryLocation W42208096371 @default.
- W4220809637 hasRelatedWork W1582245736 @default.
- W4220809637 hasRelatedWork W1990505203 @default.
- W4220809637 hasRelatedWork W2002883692 @default.
- W4220809637 hasRelatedWork W2127431506 @default.
- W4220809637 hasRelatedWork W2622163794 @default.
- W4220809637 hasRelatedWork W2790392165 @default.
- W4220809637 hasRelatedWork W3126944956 @default.
- W4220809637 hasRelatedWork W392794540 @default.
- W4220809637 hasRelatedWork W4383069276 @default.
- W4220809637 hasRelatedWork W4386944070 @default.
- W4220809637 hasVolume "68" @default.
- W4220809637 isParatext "false" @default.
- W4220809637 isRetracted "false" @default.
- W4220809637 workType "article" @default.