Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220810270> ?p ?o ?g. }
- W4220810270 endingPage "107962" @default.
- W4220810270 startingPage "107962" @default.
- W4220810270 abstract "In the last years, many authors have dedicated themselves to solving the problem of distributed resources allocation in Distribution Systems (DS). The optimal siting and sizing of such equipment can improve the efficiency of the provided service, promoting technical and economic gains. Several papers use artificial intelligence algorithms and methods based on population evolutions to achieve this goal, due to the increasing complexity of the simulated systems and the highly combinatorial characteristics of this problem. Reducing the search space and/or setting the initial population are critical factors for improving the performance of population-based optimization methods. In the literature, the adjustment of the initial population does not receive the attention it should, especially when dealing with three-phase large-scale unbalanced systems – when computational time becomes primary adversity. The objective of this paper is to propose a novel approach for DS optimization, using Genetic Algorithms (GA) to map which areas are more sensitive to equipment allocation to reduce losses. In this work, capacitor banks and distributed photovoltaic (PV) generation are considered. The method adopted to carry out the allocation considers proper modeling of unbalanced DS through multiphase Optimal Power Flow frameworks. Its development takes advantage of the probabilistic nature of the GA to perform a sensitivity analysis to determine the positions that may reduce the losses in a daily planning horizon. For this, the execution of GA is done sequentially, under different conditions of generation and load, selected at random, setting in optimization a 24-hour load and PV generation curves that take into consideration the uncertainties, representing each hour of the day individually for better detail of the planning horizon. It was seen that the best positions are always concentrated in specific regions, called Optimal Allocation Zones (OAZ), which may favor the planning of Utilities. Furthermore, the OAZ method can be used to define an initial population of evolutionary algorithms, thus achieving a reduction in computational time and a better quality of solutions, which is a major contribution to literature. Through this approach, the computational time can be reduced up to 60% in large-scale systems. Simulations were carried out on four unbalanced distribution test-feeders: IEEE 4, IEEE 13, IEEE 37, and IEEE 123 Node Test Feeders." @default.
- W4220810270 created "2022-04-03" @default.
- W4220810270 creator A5011001841 @default.
- W4220810270 creator A5050411130 @default.
- W4220810270 creator A5067125152 @default.
- W4220810270 date "2022-08-01" @default.
- W4220810270 modified "2023-09-29" @default.
- W4220810270 title "Sensibility Analysis with Genetic Algorithm to Allocate Distributed Generation and Capacitor Banks in Unbalanced Distribution Systems" @default.
- W4220810270 cites W1556016155 @default.
- W4220810270 cites W1939619177 @default.
- W4220810270 cites W1990983520 @default.
- W4220810270 cites W2001305467 @default.
- W4220810270 cites W2012109312 @default.
- W4220810270 cites W2030852296 @default.
- W4220810270 cites W2040995955 @default.
- W4220810270 cites W2054279440 @default.
- W4220810270 cites W2059993426 @default.
- W4220810270 cites W2071327840 @default.
- W4220810270 cites W2076435498 @default.
- W4220810270 cites W2083062033 @default.
- W4220810270 cites W2116596943 @default.
- W4220810270 cites W2145460317 @default.
- W4220810270 cites W2191721120 @default.
- W4220810270 cites W2205342239 @default.
- W4220810270 cites W2276735022 @default.
- W4220810270 cites W2304528389 @default.
- W4220810270 cites W2335099474 @default.
- W4220810270 cites W2344096008 @default.
- W4220810270 cites W2529456343 @default.
- W4220810270 cites W2554871994 @default.
- W4220810270 cites W2554940650 @default.
- W4220810270 cites W2564416242 @default.
- W4220810270 cites W2566225355 @default.
- W4220810270 cites W2750820179 @default.
- W4220810270 cites W2769298415 @default.
- W4220810270 cites W2769363649 @default.
- W4220810270 cites W2919423725 @default.
- W4220810270 cites W2988381701 @default.
- W4220810270 cites W2988933181 @default.
- W4220810270 cites W2999949202 @default.
- W4220810270 cites W3007355664 @default.
- W4220810270 cites W3021873232 @default.
- W4220810270 cites W3034446662 @default.
- W4220810270 cites W3036565714 @default.
- W4220810270 cites W3036684079 @default.
- W4220810270 cites W3038184569 @default.
- W4220810270 cites W3093064476 @default.
- W4220810270 cites W3109310637 @default.
- W4220810270 cites W3111705138 @default.
- W4220810270 cites W3126300407 @default.
- W4220810270 cites W3130517697 @default.
- W4220810270 cites W3169625867 @default.
- W4220810270 cites W651666327 @default.
- W4220810270 doi "https://doi.org/10.1016/j.epsr.2022.107962" @default.
- W4220810270 hasPublicationYear "2022" @default.
- W4220810270 type Work @default.
- W4220810270 citedByCount "8" @default.
- W4220810270 countsByYear W42208102702022 @default.
- W4220810270 countsByYear W42208102702023 @default.
- W4220810270 crossrefType "journal-article" @default.
- W4220810270 hasAuthorship W4220810270A5011001841 @default.
- W4220810270 hasAuthorship W4220810270A5050411130 @default.
- W4220810270 hasAuthorship W4220810270A5067125152 @default.
- W4220810270 hasConcept C11413529 @default.
- W4220810270 hasConcept C119599485 @default.
- W4220810270 hasConcept C119857082 @default.
- W4220810270 hasConcept C126255220 @default.
- W4220810270 hasConcept C127413603 @default.
- W4220810270 hasConcept C137836250 @default.
- W4220810270 hasConcept C142362112 @default.
- W4220810270 hasConcept C144024400 @default.
- W4220810270 hasConcept C149923435 @default.
- W4220810270 hasConcept C153349607 @default.
- W4220810270 hasConcept C154945302 @default.
- W4220810270 hasConcept C188573790 @default.
- W4220810270 hasConcept C2777767291 @default.
- W4220810270 hasConcept C28761237 @default.
- W4220810270 hasConcept C2908647359 @default.
- W4220810270 hasConcept C33923547 @default.
- W4220810270 hasConcept C41008148 @default.
- W4220810270 hasConcept C41291067 @default.
- W4220810270 hasConcept C49937458 @default.
- W4220810270 hasConcept C544738498 @default.
- W4220810270 hasConcept C8880873 @default.
- W4220810270 hasConceptScore W4220810270C11413529 @default.
- W4220810270 hasConceptScore W4220810270C119599485 @default.
- W4220810270 hasConceptScore W4220810270C119857082 @default.
- W4220810270 hasConceptScore W4220810270C126255220 @default.
- W4220810270 hasConceptScore W4220810270C127413603 @default.
- W4220810270 hasConceptScore W4220810270C137836250 @default.
- W4220810270 hasConceptScore W4220810270C142362112 @default.
- W4220810270 hasConceptScore W4220810270C144024400 @default.
- W4220810270 hasConceptScore W4220810270C149923435 @default.
- W4220810270 hasConceptScore W4220810270C153349607 @default.
- W4220810270 hasConceptScore W4220810270C154945302 @default.
- W4220810270 hasConceptScore W4220810270C188573790 @default.
- W4220810270 hasConceptScore W4220810270C2777767291 @default.
- W4220810270 hasConceptScore W4220810270C28761237 @default.