Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220811878> ?p ?o ?g. }
- W4220811878 endingPage "026030" @default.
- W4220811878 startingPage "026030" @default.
- W4220811878 abstract "Objective. Motor unit (MU) discharge information obtained via the online electromyogram (EMG) decomposition has shown promising prospects in multiple applications. However, the nonstationarity of EMG signals caused by the rotation (recruitment-derecruitment) of MUs and the variation of MU action potentials (MUAP) can significantly degrade the online decomposition performance. This study aimed to develop an independent component analysis-based online decomposition method that can accommodate the nonstationarity of EMG signals.Approach. The EMG nonstationarity can make the separation vectors obtained beforehand inaccurate, resulting in the reduced amplitudes of the peaks corresponding to firing events in the source signal (independent component) and then the decreased accuracy of firing events. Therefore, we utilized the FitzHugh-Nagumo (FHN) resonance model to enhance the firing peaks in the source signal in order to improve the decomposition accuracy. A two-session approach was used with the offline session to extract the separation vectors and train the FHN models. In the online session, the source signal was estimated and further processed using the FHN model before detecting the firing events in a real-time manner. The proposed method was tested on simulated EMG signals, in which MU rotation and MUAP variation were involved to mimic the nonstationarity of EMG recordings.Main results. Compared with the conventional method, the proposed method can improve the decomposition accuracy significantly (88.70% ± 4.17% vs. 92.43% ± 2.79%) by enhancing the firing peaks, and more importantly, the improvement was more prominent when the EMG signal had stronger background noises (87.00% ± 3.70% vs. 91.66% ± 2.63%).Conclusions. Our results demonstrated the effectiveness of the proposed method to utilize the FHN model to improve the online decomposition performance on the nonstationary EMG signals. Further development of our method has the potential to improve the performance of the neural decoding system that utilizes the MU discharge information and promote its application in the neural-machine interface." @default.
- W4220811878 created "2022-04-03" @default.
- W4220811878 creator A5000618839 @default.
- W4220811878 creator A5023706427 @default.
- W4220811878 creator A5030863883 @default.
- W4220811878 creator A5089669072 @default.
- W4220811878 date "2022-04-01" @default.
- W4220811878 modified "2023-10-14" @default.
- W4220811878 title "Improved online decomposition of non-stationary electromyogram via signal enhancement using a neuron resonance model: a simulation study" @default.
- W4220811878 cites W1514261135 @default.
- W4220811878 cites W1809394698 @default.
- W4220811878 cites W1896865875 @default.
- W4220811878 cites W1900148403 @default.
- W4220811878 cites W1965560603 @default.
- W4220811878 cites W1968435495 @default.
- W4220811878 cites W1968978371 @default.
- W4220811878 cites W1995167938 @default.
- W4220811878 cites W2004879773 @default.
- W4220811878 cites W2009546649 @default.
- W4220811878 cites W2018490093 @default.
- W4220811878 cites W2034255374 @default.
- W4220811878 cites W2035591701 @default.
- W4220811878 cites W2045913197 @default.
- W4220811878 cites W2064710212 @default.
- W4220811878 cites W2073459066 @default.
- W4220811878 cites W2091850962 @default.
- W4220811878 cites W2093695590 @default.
- W4220811878 cites W2099019403 @default.
- W4220811878 cites W2111320675 @default.
- W4220811878 cites W2123649031 @default.
- W4220811878 cites W2150214767 @default.
- W4220811878 cites W2220146336 @default.
- W4220811878 cites W2290981976 @default.
- W4220811878 cites W2587122088 @default.
- W4220811878 cites W2898482218 @default.
- W4220811878 cites W2918495480 @default.
- W4220811878 cites W2921986943 @default.
- W4220811878 cites W2941151069 @default.
- W4220811878 cites W2947764326 @default.
- W4220811878 cites W2955075226 @default.
- W4220811878 cites W2955232259 @default.
- W4220811878 cites W3020244590 @default.
- W4220811878 cites W3126195482 @default.
- W4220811878 cites W3127346015 @default.
- W4220811878 cites W3139355712 @default.
- W4220811878 cites W3193030064 @default.
- W4220811878 cites W3196856521 @default.
- W4220811878 cites W4249978215 @default.
- W4220811878 doi "https://doi.org/10.1088/1741-2552/ac5f1b" @default.
- W4220811878 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35303735" @default.
- W4220811878 hasPublicationYear "2022" @default.
- W4220811878 type Work @default.
- W4220811878 citedByCount "3" @default.
- W4220811878 countsByYear W42208118782023 @default.
- W4220811878 crossrefType "journal-article" @default.
- W4220811878 hasAuthorship W4220811878A5000618839 @default.
- W4220811878 hasAuthorship W4220811878A5023706427 @default.
- W4220811878 hasAuthorship W4220811878A5030863883 @default.
- W4220811878 hasAuthorship W4220811878A5089669072 @default.
- W4220811878 hasConcept C104267543 @default.
- W4220811878 hasConcept C105795698 @default.
- W4220811878 hasConcept C124681953 @default.
- W4220811878 hasConcept C136764020 @default.
- W4220811878 hasConcept C153180895 @default.
- W4220811878 hasConcept C154945302 @default.
- W4220811878 hasConcept C169760540 @default.
- W4220811878 hasConcept C178790620 @default.
- W4220811878 hasConcept C185592680 @default.
- W4220811878 hasConcept C199360897 @default.
- W4220811878 hasConcept C2778258933 @default.
- W4220811878 hasConcept C2779182362 @default.
- W4220811878 hasConcept C2779843651 @default.
- W4220811878 hasConcept C2781425072 @default.
- W4220811878 hasConcept C28490314 @default.
- W4220811878 hasConcept C33923547 @default.
- W4220811878 hasConcept C41008148 @default.
- W4220811878 hasConcept C554190296 @default.
- W4220811878 hasConcept C74050887 @default.
- W4220811878 hasConcept C76155785 @default.
- W4220811878 hasConcept C86803240 @default.
- W4220811878 hasConceptScore W4220811878C104267543 @default.
- W4220811878 hasConceptScore W4220811878C105795698 @default.
- W4220811878 hasConceptScore W4220811878C124681953 @default.
- W4220811878 hasConceptScore W4220811878C136764020 @default.
- W4220811878 hasConceptScore W4220811878C153180895 @default.
- W4220811878 hasConceptScore W4220811878C154945302 @default.
- W4220811878 hasConceptScore W4220811878C169760540 @default.
- W4220811878 hasConceptScore W4220811878C178790620 @default.
- W4220811878 hasConceptScore W4220811878C185592680 @default.
- W4220811878 hasConceptScore W4220811878C199360897 @default.
- W4220811878 hasConceptScore W4220811878C2778258933 @default.
- W4220811878 hasConceptScore W4220811878C2779182362 @default.
- W4220811878 hasConceptScore W4220811878C2779843651 @default.
- W4220811878 hasConceptScore W4220811878C2781425072 @default.
- W4220811878 hasConceptScore W4220811878C28490314 @default.
- W4220811878 hasConceptScore W4220811878C33923547 @default.
- W4220811878 hasConceptScore W4220811878C41008148 @default.
- W4220811878 hasConceptScore W4220811878C554190296 @default.