Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220812402> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4220812402 endingPage "9" @default.
- W4220812402 startingPage "1" @default.
- W4220812402 abstract "A great diversity comes in the field of medical sciences because of computing capabilities and improvements in techniques, especially in the identification of human heart diseases. Nowadays, it is one of the world’s most dangerous human heart diseases and has very serious effects the human life. Accurate and timely identification of human heart disease can be very helpful in preventing heart failure in its early stages and will improve the patient’s survival. Manual approaches for the identification of heart disease are biased and prone to interexaminer variability. In this regard, machine learning algorithms are efficient and reliable sources to detect and categorize persons suffering from heart disease and those who are healthy. According to the recommended study, we identified and predicted human heart disease using a variety of machine learning algorithms and used the heart disease dataset to evaluate its performance using different metrics for evaluation, such as sensitivity, specificity, F-measure, and classification accuracy. For this purpose, we used nine classifiers of machine learning to the final dataset before and after the hyperparameter tuning of the machine learning classifiers, such as AB, LR, ET, MNB, CART, SVM, LDA, RF, and XGB. Furthermore, we check their accuracy on the standard heart disease dataset by performing certain preprocessing, standardization of dataset, and hyperparameter tuning. Additionally, to train and validate the machine learning algorithms, we deployed the standard K-fold cross-validation technique. Finally, the experimental result indicated that the accuracy of the prediction classifiers with hyperparameter tuning improved and achieved notable results with data standardization and the hyperparameter tuning of the machine learning classifiers." @default.
- W4220812402 created "2022-04-03" @default.
- W4220812402 creator A5026401762 @default.
- W4220812402 creator A5040966539 @default.
- W4220812402 creator A5055872249 @default.
- W4220812402 creator A5082481187 @default.
- W4220812402 creator A5085362362 @default.
- W4220812402 creator A5088643879 @default.
- W4220812402 date "2022-03-09" @default.
- W4220812402 modified "2023-10-18" @default.
- W4220812402 title "A Method for Improving Prediction of Human Heart Disease Using Machine Learning Algorithms" @default.
- W4220812402 cites W1970805379 @default.
- W4220812402 cites W1980128308 @default.
- W4220812402 cites W1996710573 @default.
- W4220812402 cites W2046559208 @default.
- W4220812402 cites W2170517798 @default.
- W4220812402 cites W2752038267 @default.
- W4220812402 cites W2775378789 @default.
- W4220812402 cites W2800295500 @default.
- W4220812402 cites W2884663020 @default.
- W4220812402 cites W2900794383 @default.
- W4220812402 cites W2906028509 @default.
- W4220812402 cites W2912248656 @default.
- W4220812402 cites W2949767632 @default.
- W4220812402 cites W2954788759 @default.
- W4220812402 cites W2963565281 @default.
- W4220812402 cites W3007513993 @default.
- W4220812402 cites W3035142875 @default.
- W4220812402 cites W3037322243 @default.
- W4220812402 cites W3044659283 @default.
- W4220812402 cites W3127657277 @default.
- W4220812402 cites W3129173377 @default.
- W4220812402 cites W1970711085 @default.
- W4220812402 doi "https://doi.org/10.1155/2022/1410169" @default.
- W4220812402 hasPublicationYear "2022" @default.
- W4220812402 type Work @default.
- W4220812402 citedByCount "21" @default.
- W4220812402 countsByYear W42208124022022 @default.
- W4220812402 countsByYear W42208124022023 @default.
- W4220812402 crossrefType "journal-article" @default.
- W4220812402 hasAuthorship W4220812402A5026401762 @default.
- W4220812402 hasAuthorship W4220812402A5040966539 @default.
- W4220812402 hasAuthorship W4220812402A5055872249 @default.
- W4220812402 hasAuthorship W4220812402A5082481187 @default.
- W4220812402 hasAuthorship W4220812402A5085362362 @default.
- W4220812402 hasAuthorship W4220812402A5088643879 @default.
- W4220812402 hasBestOaLocation W42208124021 @default.
- W4220812402 hasConcept C111919701 @default.
- W4220812402 hasConcept C116834253 @default.
- W4220812402 hasConcept C119857082 @default.
- W4220812402 hasConcept C12267149 @default.
- W4220812402 hasConcept C154945302 @default.
- W4220812402 hasConcept C164705383 @default.
- W4220812402 hasConcept C188087704 @default.
- W4220812402 hasConcept C2780074459 @default.
- W4220812402 hasConcept C34736171 @default.
- W4220812402 hasConcept C41008148 @default.
- W4220812402 hasConcept C59822182 @default.
- W4220812402 hasConcept C71924100 @default.
- W4220812402 hasConcept C8642999 @default.
- W4220812402 hasConcept C86803240 @default.
- W4220812402 hasConcept C94124525 @default.
- W4220812402 hasConceptScore W4220812402C111919701 @default.
- W4220812402 hasConceptScore W4220812402C116834253 @default.
- W4220812402 hasConceptScore W4220812402C119857082 @default.
- W4220812402 hasConceptScore W4220812402C12267149 @default.
- W4220812402 hasConceptScore W4220812402C154945302 @default.
- W4220812402 hasConceptScore W4220812402C164705383 @default.
- W4220812402 hasConceptScore W4220812402C188087704 @default.
- W4220812402 hasConceptScore W4220812402C2780074459 @default.
- W4220812402 hasConceptScore W4220812402C34736171 @default.
- W4220812402 hasConceptScore W4220812402C41008148 @default.
- W4220812402 hasConceptScore W4220812402C59822182 @default.
- W4220812402 hasConceptScore W4220812402C71924100 @default.
- W4220812402 hasConceptScore W4220812402C8642999 @default.
- W4220812402 hasConceptScore W4220812402C86803240 @default.
- W4220812402 hasConceptScore W4220812402C94124525 @default.
- W4220812402 hasLocation W42208124021 @default.
- W4220812402 hasLocation W42208124022 @default.
- W4220812402 hasOpenAccess W4220812402 @default.
- W4220812402 hasPrimaryLocation W42208124021 @default.
- W4220812402 hasRelatedWork W1996541855 @default.
- W4220812402 hasRelatedWork W3013125858 @default.
- W4220812402 hasRelatedWork W3195168932 @default.
- W4220812402 hasRelatedWork W3199608561 @default.
- W4220812402 hasRelatedWork W4210794429 @default.
- W4220812402 hasRelatedWork W4223456145 @default.
- W4220812402 hasRelatedWork W4283697347 @default.
- W4220812402 hasRelatedWork W4295309597 @default.
- W4220812402 hasRelatedWork W4309113015 @default.
- W4220812402 hasRelatedWork W4386429003 @default.
- W4220812402 hasVolume "2022" @default.
- W4220812402 isParatext "false" @default.
- W4220812402 isRetracted "false" @default.
- W4220812402 workType "article" @default.