Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220814987> ?p ?o ?g. }
- W4220814987 endingPage "136" @default.
- W4220814987 startingPage "136" @default.
- W4220814987 abstract "Pulmonary function parameters play a pivotal role in the assessment of respiratory diseases. However, the accuracy of the existing methods for the prediction of pulmonary function parameters is low. This study proposes a combination algorithm to improve the accuracy of pulmonary function parameter prediction.We first established a system to collect volumetric capnography and then processed the data with a combination algorithm to predict pulmonary function parameters. The algorithm consists of three main parts: a medical feature regression structure consisting of support vector machines (SVM) and extreme gradient boosting (XGBoost) algorithms, a sequence feature regression structure consisting of one-dimensional convolutional neural network (1D-CNN), and an error correction structure using improved K-nearest neighbor (KNN) algorithm.The root mean square error (RMSE) of the pulmonary function parameters predicted by the combination algorithm was less than 0.39L and the R2 was found to be greater than 0.85 through a ten-fold cross-validation experiment.Compared with the existing methods for predicting pulmonary function parameters, the present algorithm can achieve a higher accuracy rate. At the same time, this algorithm uses specific processing structures for different features, and the interpretability of the algorithm is ensured while mining the feature depth information." @default.
- W4220814987 created "2022-04-03" @default.
- W4220814987 creator A5005915865 @default.
- W4220814987 creator A5008947580 @default.
- W4220814987 creator A5013738881 @default.
- W4220814987 creator A5020457256 @default.
- W4220814987 creator A5026685566 @default.
- W4220814987 creator A5029573023 @default.
- W4220814987 creator A5038988639 @default.
- W4220814987 creator A5047350019 @default.
- W4220814987 creator A5049078993 @default.
- W4220814987 creator A5059771880 @default.
- W4220814987 date "2022-03-25" @default.
- W4220814987 modified "2023-10-02" @default.
- W4220814987 title "Prediction of Pulmonary Function Parameters Based on a Combination Algorithm" @default.
- W4220814987 cites W2084944134 @default.
- W4220814987 cites W2119274006 @default.
- W4220814987 cites W2145916327 @default.
- W4220814987 cites W2158994553 @default.
- W4220814987 cites W2530232956 @default.
- W4220814987 cites W2618530766 @default.
- W4220814987 cites W2783380896 @default.
- W4220814987 cites W2810720819 @default.
- W4220814987 cites W2886422188 @default.
- W4220814987 cites W2921518676 @default.
- W4220814987 cites W2947652004 @default.
- W4220814987 cites W2980875508 @default.
- W4220814987 cites W2983832487 @default.
- W4220814987 cites W3003753408 @default.
- W4220814987 cites W3006675226 @default.
- W4220814987 cites W3020961207 @default.
- W4220814987 cites W3027374119 @default.
- W4220814987 cites W3039175881 @default.
- W4220814987 cites W3040869289 @default.
- W4220814987 cites W3044464528 @default.
- W4220814987 cites W3045989872 @default.
- W4220814987 cites W3087747282 @default.
- W4220814987 cites W3092623569 @default.
- W4220814987 cites W3096393510 @default.
- W4220814987 cites W3096402359 @default.
- W4220814987 cites W3101991086 @default.
- W4220814987 cites W3107568551 @default.
- W4220814987 cites W3130005145 @default.
- W4220814987 cites W3135918002 @default.
- W4220814987 cites W3148517242 @default.
- W4220814987 cites W3196012986 @default.
- W4220814987 cites W3215119648 @default.
- W4220814987 cites W4210954017 @default.
- W4220814987 doi "https://doi.org/10.3390/bioengineering9040136" @default.
- W4220814987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35447696" @default.
- W4220814987 hasPublicationYear "2022" @default.
- W4220814987 type Work @default.
- W4220814987 citedByCount "2" @default.
- W4220814987 countsByYear W42208149872022 @default.
- W4220814987 countsByYear W42208149872023 @default.
- W4220814987 crossrefType "journal-article" @default.
- W4220814987 hasAuthorship W4220814987A5005915865 @default.
- W4220814987 hasAuthorship W4220814987A5008947580 @default.
- W4220814987 hasAuthorship W4220814987A5013738881 @default.
- W4220814987 hasAuthorship W4220814987A5020457256 @default.
- W4220814987 hasAuthorship W4220814987A5026685566 @default.
- W4220814987 hasAuthorship W4220814987A5029573023 @default.
- W4220814987 hasAuthorship W4220814987A5038988639 @default.
- W4220814987 hasAuthorship W4220814987A5047350019 @default.
- W4220814987 hasAuthorship W4220814987A5049078993 @default.
- W4220814987 hasAuthorship W4220814987A5059771880 @default.
- W4220814987 hasBestOaLocation W42208149871 @default.
- W4220814987 hasConcept C105795698 @default.
- W4220814987 hasConcept C11413529 @default.
- W4220814987 hasConcept C12267149 @default.
- W4220814987 hasConcept C124101348 @default.
- W4220814987 hasConcept C138885662 @default.
- W4220814987 hasConcept C139945424 @default.
- W4220814987 hasConcept C153180895 @default.
- W4220814987 hasConcept C154945302 @default.
- W4220814987 hasConcept C2776401178 @default.
- W4220814987 hasConcept C2781067378 @default.
- W4220814987 hasConcept C33923547 @default.
- W4220814987 hasConcept C41008148 @default.
- W4220814987 hasConcept C41895202 @default.
- W4220814987 hasConceptScore W4220814987C105795698 @default.
- W4220814987 hasConceptScore W4220814987C11413529 @default.
- W4220814987 hasConceptScore W4220814987C12267149 @default.
- W4220814987 hasConceptScore W4220814987C124101348 @default.
- W4220814987 hasConceptScore W4220814987C138885662 @default.
- W4220814987 hasConceptScore W4220814987C139945424 @default.
- W4220814987 hasConceptScore W4220814987C153180895 @default.
- W4220814987 hasConceptScore W4220814987C154945302 @default.
- W4220814987 hasConceptScore W4220814987C2776401178 @default.
- W4220814987 hasConceptScore W4220814987C2781067378 @default.
- W4220814987 hasConceptScore W4220814987C33923547 @default.
- W4220814987 hasConceptScore W4220814987C41008148 @default.
- W4220814987 hasConceptScore W4220814987C41895202 @default.
- W4220814987 hasFunder F4320321001 @default.
- W4220814987 hasIssue "4" @default.
- W4220814987 hasLocation W42208149871 @default.
- W4220814987 hasLocation W42208149872 @default.
- W4220814987 hasLocation W42208149873 @default.