Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220816445> ?p ?o ?g. }
- W4220816445 endingPage "14" @default.
- W4220816445 startingPage "1" @default.
- W4220816445 abstract "With the explosive growth of sports video data on the internet platform, how to scientifically manage this information has become a major challenge in the current big data era. In this context, a new lightweight player segmentation algorithm is proposed to realize the automatic analysis of basketball game video. Firstly, semantic events are expressed by extracting group and global motion features. A complete basketball game video is divided into three stages, and a basketball event classification method integrating global group motion patterns and domain knowledge is proposed. Secondly, a player segmentation algorithm based on lightweight deep learning is proposed to detect basketball players, segment the players, and finally extract players’ spatial features based on deep learning to realize players’ pose estimation. As the experimental results indicate, when a proposed 2-stage classification algorithm is used to classify the videos, the accuracy of identifying layup, the shooting, and other 2-pointers are improved by 21.26% and 6.41%, respectively. And the accuracy of average events sees an improvement of 2.74%. The results imply that the 2-stage classification based on event-occ is effective. After comparing the four methods of classifying players, it is found that there is no significant difference among these four methods about the accuracy of segmenting. Nevertheless, when judged with the time that these methods take separately, FCN-CNN (Fully Convolutional Network-Convolutional Neural Network) based on superpixels has overwhelming advantages. The event analysis method of basketball game video proposed here can realize the automatic analysis of basketball video, which is beneficial to promoting the rapid development of basketball and even sports." @default.
- W4220816445 created "2022-04-03" @default.
- W4220816445 creator A5014394467 @default.
- W4220816445 creator A5063555203 @default.
- W4220816445 creator A5088469794 @default.
- W4220816445 date "2022-03-15" @default.
- W4220816445 modified "2023-09-30" @default.
- W4220816445 title "Video Analysis and System Construction of Basketball Game by Lightweight Deep Learning under the Internet of Things" @default.
- W4220816445 cites W2283320980 @default.
- W4220816445 cites W2561981131 @default.
- W4220816445 cites W2573587735 @default.
- W4220816445 cites W2579495707 @default.
- W4220816445 cites W2580840020 @default.
- W4220816445 cites W2582766256 @default.
- W4220816445 cites W2600879738 @default.
- W4220816445 cites W2606485483 @default.
- W4220816445 cites W2750444890 @default.
- W4220816445 cites W2750586355 @default.
- W4220816445 cites W2768265868 @default.
- W4220816445 cites W2788633781 @default.
- W4220816445 cites W2803595004 @default.
- W4220816445 cites W2902383372 @default.
- W4220816445 cites W2964114039 @default.
- W4220816445 cites W2966434391 @default.
- W4220816445 cites W2967519536 @default.
- W4220816445 cites W3005466304 @default.
- W4220816445 cites W3036785271 @default.
- W4220816445 cites W3037839127 @default.
- W4220816445 cites W3040040929 @default.
- W4220816445 cites W3043783230 @default.
- W4220816445 cites W3096648453 @default.
- W4220816445 cites W3098949126 @default.
- W4220816445 cites W3128451632 @default.
- W4220816445 cites W3134919880 @default.
- W4220816445 cites W3135521751 @default.
- W4220816445 cites W3137433650 @default.
- W4220816445 cites W3153862465 @default.
- W4220816445 cites W3162958367 @default.
- W4220816445 cites W3172166161 @default.
- W4220816445 cites W4236392531 @default.
- W4220816445 cites W4243046888 @default.
- W4220816445 doi "https://doi.org/10.1155/2022/6118798" @default.
- W4220816445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35330596" @default.
- W4220816445 hasPublicationYear "2022" @default.
- W4220816445 type Work @default.
- W4220816445 citedByCount "0" @default.
- W4220816445 crossrefType "journal-article" @default.
- W4220816445 hasAuthorship W4220816445A5014394467 @default.
- W4220816445 hasAuthorship W4220816445A5063555203 @default.
- W4220816445 hasAuthorship W4220816445A5088469794 @default.
- W4220816445 hasBestOaLocation W42208164451 @default.
- W4220816445 hasConcept C103189561 @default.
- W4220816445 hasConcept C108583219 @default.
- W4220816445 hasConcept C110875604 @default.
- W4220816445 hasConcept C119857082 @default.
- W4220816445 hasConcept C121332964 @default.
- W4220816445 hasConcept C136764020 @default.
- W4220816445 hasConcept C151730666 @default.
- W4220816445 hasConcept C153180895 @default.
- W4220816445 hasConcept C154945302 @default.
- W4220816445 hasConcept C166957645 @default.
- W4220816445 hasConcept C2779343474 @default.
- W4220816445 hasConcept C2779662365 @default.
- W4220816445 hasConcept C2779789524 @default.
- W4220816445 hasConcept C3018412434 @default.
- W4220816445 hasConcept C31972630 @default.
- W4220816445 hasConcept C41008148 @default.
- W4220816445 hasConcept C49774154 @default.
- W4220816445 hasConcept C62520636 @default.
- W4220816445 hasConcept C81363708 @default.
- W4220816445 hasConcept C86803240 @default.
- W4220816445 hasConcept C89600930 @default.
- W4220816445 hasConcept C95457728 @default.
- W4220816445 hasConceptScore W4220816445C103189561 @default.
- W4220816445 hasConceptScore W4220816445C108583219 @default.
- W4220816445 hasConceptScore W4220816445C110875604 @default.
- W4220816445 hasConceptScore W4220816445C119857082 @default.
- W4220816445 hasConceptScore W4220816445C121332964 @default.
- W4220816445 hasConceptScore W4220816445C136764020 @default.
- W4220816445 hasConceptScore W4220816445C151730666 @default.
- W4220816445 hasConceptScore W4220816445C153180895 @default.
- W4220816445 hasConceptScore W4220816445C154945302 @default.
- W4220816445 hasConceptScore W4220816445C166957645 @default.
- W4220816445 hasConceptScore W4220816445C2779343474 @default.
- W4220816445 hasConceptScore W4220816445C2779662365 @default.
- W4220816445 hasConceptScore W4220816445C2779789524 @default.
- W4220816445 hasConceptScore W4220816445C3018412434 @default.
- W4220816445 hasConceptScore W4220816445C31972630 @default.
- W4220816445 hasConceptScore W4220816445C41008148 @default.
- W4220816445 hasConceptScore W4220816445C49774154 @default.
- W4220816445 hasConceptScore W4220816445C62520636 @default.
- W4220816445 hasConceptScore W4220816445C81363708 @default.
- W4220816445 hasConceptScore W4220816445C86803240 @default.
- W4220816445 hasConceptScore W4220816445C89600930 @default.
- W4220816445 hasConceptScore W4220816445C95457728 @default.
- W4220816445 hasLocation W42208164451 @default.
- W4220816445 hasLocation W42208164452 @default.
- W4220816445 hasLocation W42208164453 @default.