Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220817819> ?p ?o ?g. }
- W4220817819 endingPage "1326" @default.
- W4220817819 startingPage "1315" @default.
- W4220817819 abstract "Chiral emission can be achieved from a circularly polarized dipole emitter in a nanophotonic structure that possess special polarization properties such as a polarization singularity, namely with right or left circularly polarization (C-points). Recently, Chen et al. [Nature Physics 16, 571 (2020)] demonstrated the surprising result of chiral radiation from a linearly-polarized (LP) dipole emitter, and argued that this effect is caused by a decoupling with the underlying eigenmodes of a non-Hermitian system, working at an exceptional point (EP). Here we present a quasinormal mode (QNM) approach to model a similar index-modulated ring resonator working near an EP and show the same unusual chiral power flow properties from LP emitters, in direct agreement with the experimental results. We explain these results quantitatively without invoking the interpretation of a missing dimension (the Jordan vector) and a decoupling from the cavity eigenmodes, since the correct eigenmodes are the QNMs which explain the chiral emission using only two cavity modes. By coupling a LP emitter with the dominant two QNMs of the ring resonator, we show how the chiral emission depend on the position and orientation of the emitter, which is also verified by the excellent agreement with respect to the power flow between the QNM theory and full numerical dipole solutions. We also show how a normal mode solution will fail to capture the correct chirality since it does not take into account the essential QNM phase. Moreover, we demonstrate how one can achieve frequency-dependent chiral emission, and replace lossy materials with gain materials in the index modulation to reverse the chirality." @default.
- W4220817819 created "2022-04-03" @default.
- W4220817819 creator A5016364024 @default.
- W4220817819 creator A5023191643 @default.
- W4220817819 creator A5089898945 @default.
- W4220817819 date "2022-03-09" @default.
- W4220817819 modified "2023-10-11" @default.
- W4220817819 title "Quasinormal Mode Theory of Chiral Power Flow from Linearly Polarized Dipole Emitters Coupled to Index-Modulated Microring Resonators Close to an Exceptional Point" @default.
- W4220817819 cites W1531935167 @default.
- W4220817819 cites W1561425337 @default.
- W4220817819 cites W1635806905 @default.
- W4220817819 cites W16472978 @default.
- W4220817819 cites W1665371518 @default.
- W4220817819 cites W1788986006 @default.
- W4220817819 cites W1911944689 @default.
- W4220817819 cites W1911969426 @default.
- W4220817819 cites W1970332560 @default.
- W4220817819 cites W1973795078 @default.
- W4220817819 cites W1974418311 @default.
- W4220817819 cites W1978691316 @default.
- W4220817819 cites W1978881395 @default.
- W4220817819 cites W1978986114 @default.
- W4220817819 cites W1979129168 @default.
- W4220817819 cites W1980199777 @default.
- W4220817819 cites W1986981715 @default.
- W4220817819 cites W1991904820 @default.
- W4220817819 cites W1993182759 @default.
- W4220817819 cites W1994270079 @default.
- W4220817819 cites W1999750768 @default.
- W4220817819 cites W2000359448 @default.
- W4220817819 cites W2005869052 @default.
- W4220817819 cites W2020028184 @default.
- W4220817819 cites W2023147957 @default.
- W4220817819 cites W2027718107 @default.
- W4220817819 cites W2028943257 @default.
- W4220817819 cites W2031656208 @default.
- W4220817819 cites W2032084888 @default.
- W4220817819 cites W2046010132 @default.
- W4220817819 cites W2047699813 @default.
- W4220817819 cites W2049492471 @default.
- W4220817819 cites W2050208293 @default.
- W4220817819 cites W2051235662 @default.
- W4220817819 cites W2057002531 @default.
- W4220817819 cites W2058268431 @default.
- W4220817819 cites W2058473357 @default.
- W4220817819 cites W2059440460 @default.
- W4220817819 cites W2061072631 @default.
- W4220817819 cites W2066202639 @default.
- W4220817819 cites W2067123857 @default.
- W4220817819 cites W2067817850 @default.
- W4220817819 cites W2075381039 @default.
- W4220817819 cites W2078604890 @default.
- W4220817819 cites W2079158863 @default.
- W4220817819 cites W2087244145 @default.
- W4220817819 cites W2087583639 @default.
- W4220817819 cites W2092349245 @default.
- W4220817819 cites W2094960671 @default.
- W4220817819 cites W2101212061 @default.
- W4220817819 cites W2110821423 @default.
- W4220817819 cites W2117062221 @default.
- W4220817819 cites W2132764286 @default.
- W4220817819 cites W2140726841 @default.
- W4220817819 cites W2142998301 @default.
- W4220817819 cites W2143841922 @default.
- W4220817819 cites W2148798946 @default.
- W4220817819 cites W2149179106 @default.
- W4220817819 cites W2158930972 @default.
- W4220817819 cites W2166080990 @default.
- W4220817819 cites W2211410166 @default.
- W4220817819 cites W2255317856 @default.
- W4220817819 cites W2307671968 @default.
- W4220817819 cites W2314350111 @default.
- W4220817819 cites W2343283295 @default.
- W4220817819 cites W2395614120 @default.
- W4220817819 cites W2412395139 @default.
- W4220817819 cites W2418622137 @default.
- W4220817819 cites W2478359861 @default.
- W4220817819 cites W2488446542 @default.
- W4220817819 cites W2521032629 @default.
- W4220817819 cites W2565912930 @default.
- W4220817819 cites W2588508788 @default.
- W4220817819 cites W2618865196 @default.
- W4220817819 cites W2739884744 @default.
- W4220817819 cites W2744045251 @default.
- W4220817819 cites W2744151324 @default.
- W4220817819 cites W2763944424 @default.
- W4220817819 cites W2768107904 @default.
- W4220817819 cites W2781491230 @default.
- W4220817819 cites W2785592010 @default.
- W4220817819 cites W2791270389 @default.
- W4220817819 cites W2793448389 @default.
- W4220817819 cites W2796231206 @default.
- W4220817819 cites W2908266731 @default.
- W4220817819 cites W2930665417 @default.
- W4220817819 cites W2930890360 @default.
- W4220817819 cites W2934336970 @default.
- W4220817819 cites W2963094433 @default.
- W4220817819 cites W2963287789 @default.