Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220823478> ?p ?o ?g. }
- W4220823478 endingPage "1918" @default.
- W4220823478 startingPage "1903" @default.
- W4220823478 abstract "Scenario reduction is an effective method to ease the computational burden of stochastic programming problems, which aims at choosing a subset of scenarios that can better represent a large number of possible scenarios. Higher-order moments are critical in the scenario reduction process, especially for stochastic programming problems that are greatly affected by the moments. From this idea, we construct a mixed integer linear programming model to improve the reduction accuracy of traditional methods by minimizing the moments’ information loss between the original and reduced scenarios. An improved Benders decomposition algorithm is then designed to find an optimal solution for the model. Finally, the resulting scenarios are examined on an international portfolio selection problem. Empirical and comparative studies are also carried out to reveal the superiority of our proposed scenario reduction method over other existing approaches or models, together with the superior performance of the algorithm. Summary of Contribution: To effectively solve stochastic programming problems, the scenario reduction method has become an active research area to strike a balance between the fine representation of random variables and computational complexity. Thus, how to design a reasonable optimal scenario reduction model and effectively solve this complex model is very important and meaningful. On the other hand, for some stochastic programming problems, especially the portfolio selection problems, statistical properties of risky assets returns may play a more important role in the scenario reduction process. However, the traditional scenario reduction methods have ignored this point. Thus, in this paper, we propose a mixed integer linear programming model to improve the reduction accuracy by minimizing the higher-order moments’ information loss between the original and reduced scenarios. Furthermore, an accelerated Benders decomposition algorithm is also designed to solve the proposed model. Hence, the aim of this paper is to extend the existing scenario reduction method in substantial and meaningful ways." @default.
- W4220823478 created "2022-04-03" @default.
- W4220823478 creator A5026594456 @default.
- W4220823478 creator A5063129646 @default.
- W4220823478 date "2022-07-01" @default.
- W4220823478 modified "2023-09-24" @default.
- W4220823478 title "A New Scenario Reduction Method Based on Higher-Order Moments" @default.
- W4220823478 cites W1478699982 @default.
- W4220823478 cites W1553000336 @default.
- W4220823478 cites W1570220941 @default.
- W4220823478 cites W1983582719 @default.
- W4220823478 cites W1986282701 @default.
- W4220823478 cites W1991024521 @default.
- W4220823478 cites W2001962902 @default.
- W4220823478 cites W2007270903 @default.
- W4220823478 cites W2021111715 @default.
- W4220823478 cites W2023587476 @default.
- W4220823478 cites W2027778813 @default.
- W4220823478 cites W2035488027 @default.
- W4220823478 cites W2044121814 @default.
- W4220823478 cites W2072991174 @default.
- W4220823478 cites W2074036729 @default.
- W4220823478 cites W2086522200 @default.
- W4220823478 cites W2087583752 @default.
- W4220823478 cites W2087682750 @default.
- W4220823478 cites W2090112424 @default.
- W4220823478 cites W2095207741 @default.
- W4220823478 cites W2095283796 @default.
- W4220823478 cites W2100140125 @default.
- W4220823478 cites W2105701827 @default.
- W4220823478 cites W2109116383 @default.
- W4220823478 cites W2119407575 @default.
- W4220823478 cites W2129946839 @default.
- W4220823478 cites W2152626777 @default.
- W4220823478 cites W2255521334 @default.
- W4220823478 cites W2556742204 @default.
- W4220823478 cites W2582455408 @default.
- W4220823478 cites W2742900359 @default.
- W4220823478 cites W2767787634 @default.
- W4220823478 cites W2772843634 @default.
- W4220823478 cites W2803693170 @default.
- W4220823478 cites W2917339392 @default.
- W4220823478 cites W3030627971 @default.
- W4220823478 cites W311875751 @default.
- W4220823478 cites W4232585008 @default.
- W4220823478 cites W4250535541 @default.
- W4220823478 doi "https://doi.org/10.1287/ijoc.2021.1155" @default.
- W4220823478 hasPublicationYear "2022" @default.
- W4220823478 type Work @default.
- W4220823478 citedByCount "1" @default.
- W4220823478 countsByYear W42208234782023 @default.
- W4220823478 crossrefType "journal-article" @default.
- W4220823478 hasAuthorship W4220823478A5026594456 @default.
- W4220823478 hasAuthorship W4220823478A5063129646 @default.
- W4220823478 hasConcept C106159729 @default.
- W4220823478 hasConcept C111335779 @default.
- W4220823478 hasConcept C126255220 @default.
- W4220823478 hasConcept C137631369 @default.
- W4220823478 hasConcept C162324750 @default.
- W4220823478 hasConcept C17744445 @default.
- W4220823478 hasConcept C199360897 @default.
- W4220823478 hasConcept C199539241 @default.
- W4220823478 hasConcept C2524010 @default.
- W4220823478 hasConcept C2776359362 @default.
- W4220823478 hasConcept C2780821815 @default.
- W4220823478 hasConcept C33923547 @default.
- W4220823478 hasConcept C34165917 @default.
- W4220823478 hasConcept C41008148 @default.
- W4220823478 hasConcept C41045048 @default.
- W4220823478 hasConcept C56086750 @default.
- W4220823478 hasConcept C94625758 @default.
- W4220823478 hasConceptScore W4220823478C106159729 @default.
- W4220823478 hasConceptScore W4220823478C111335779 @default.
- W4220823478 hasConceptScore W4220823478C126255220 @default.
- W4220823478 hasConceptScore W4220823478C137631369 @default.
- W4220823478 hasConceptScore W4220823478C162324750 @default.
- W4220823478 hasConceptScore W4220823478C17744445 @default.
- W4220823478 hasConceptScore W4220823478C199360897 @default.
- W4220823478 hasConceptScore W4220823478C199539241 @default.
- W4220823478 hasConceptScore W4220823478C2524010 @default.
- W4220823478 hasConceptScore W4220823478C2776359362 @default.
- W4220823478 hasConceptScore W4220823478C2780821815 @default.
- W4220823478 hasConceptScore W4220823478C33923547 @default.
- W4220823478 hasConceptScore W4220823478C34165917 @default.
- W4220823478 hasConceptScore W4220823478C41008148 @default.
- W4220823478 hasConceptScore W4220823478C41045048 @default.
- W4220823478 hasConceptScore W4220823478C56086750 @default.
- W4220823478 hasConceptScore W4220823478C94625758 @default.
- W4220823478 hasIssue "4" @default.
- W4220823478 hasLocation W42208234781 @default.
- W4220823478 hasOpenAccess W4220823478 @default.
- W4220823478 hasPrimaryLocation W42208234781 @default.
- W4220823478 hasRelatedWork W1710241493 @default.
- W4220823478 hasRelatedWork W1972675159 @default.
- W4220823478 hasRelatedWork W2048264204 @default.
- W4220823478 hasRelatedWork W2056564089 @default.
- W4220823478 hasRelatedWork W2085449023 @default.
- W4220823478 hasRelatedWork W2100898675 @default.