Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220824906> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4220824906 abstract "<p>Urban water demands vary across multiple spatio-temporal scales, driven by population growth, climate change, and urbanization. Demand-side management emerged as an important complementary measure to supply-side interventions to address urban water scarcity, foster water conservation, and inform water governance. Moreover, rapid development and deployment of Advanced Metering Infrastructure (AMI) and so-called digitalization in the water sector unfold new opportunities to uncover water demand patterns and model water demands at increasingly high spatial and temporal scales. However, challenges to modelling water demands arise from the uncertainties of water demands under abrupt environmental and societal change. The current Covid-19 Pandemic with the Stay-at-Home order is an example of such sources of uncertainty because it rapidly and unexpectedly changed people&#8217;s working patterns and lifestyles. Understanding and modelling water demands across spatial and temporal scales considering an uncertain world is, thus, key to designing robust demand management strategies.</p><p>In this work, we investigate urban water demand changes at multiple spatio-temporal scales in Milan (Italy). We combine different state-of-art data-driven models (i.e., Ruptures breakpoint detection framework, LightGBM, Hierarchical clustering, and Recurrent Neural Networks) to extract water demand characteristics from heterogeneous data sources, including historical time series of water consumption recorded with AMI, drinking water volumes pumped in the water distribution network, and socio-demographic characteristics of different urban districts. At the city scale, we found that a significant declining trend in water consumption occurred in 2017-2020, especially during the Pandemic and the first lockdown measures. At the sub-city scale, we explored the relationships between water demand and different socio-demographic, economic, and urban form features with data from 2004 to 2020. Finally, we analyzed AMI data collected at the water account level in 2019-2021 to assess the effect of Pandemic on demand pattern change and cross-correlate it with spatial heterogeneity of neighborhood features. While the investigation of historical demand pattern change gives insights to design long-term demand management strategies, accurate prediction of future demand can help improve short-term operational efficiency for water utilities. In this regard, in the last phase of this work, we compare state-of-art predictive models to explore how accurately machine learning/deep learning models can predict water demand at city and sub-city scales. Preliminary prediction results show that advanced models like Long Short Term Memory networks (LSTM) with wavelet transform technique can attain model accuracies (R<sup>2</sup>) of 0.80 to 0.95 for 1-day ahead prediction.&#160;</p>" @default.
- W4220824906 created "2022-04-03" @default.
- W4220824906 creator A5040689425 @default.
- W4220824906 creator A5041497534 @default.
- W4220824906 creator A5074316043 @default.
- W4220824906 date "2022-03-28" @default.
- W4220824906 modified "2023-09-23" @default.
- W4220824906 title "Multi-scale Modelling of Urban Water Demand under Urban Development and Societal Uncertainties: The Case Study of Milan, Italy." @default.
- W4220824906 doi "https://doi.org/10.5194/egusphere-egu22-7292" @default.
- W4220824906 hasPublicationYear "2022" @default.
- W4220824906 type Work @default.
- W4220824906 citedByCount "0" @default.
- W4220824906 crossrefType "posted-content" @default.
- W4220824906 hasAuthorship W4220824906A5040689425 @default.
- W4220824906 hasAuthorship W4220824906A5041497534 @default.
- W4220824906 hasAuthorship W4220824906A5074316043 @default.
- W4220824906 hasBestOaLocation W42208249062 @default.
- W4220824906 hasConcept C107826830 @default.
- W4220824906 hasConcept C110158866 @default.
- W4220824906 hasConcept C134560507 @default.
- W4220824906 hasConcept C139719470 @default.
- W4220824906 hasConcept C144024400 @default.
- W4220824906 hasConcept C149207113 @default.
- W4220824906 hasConcept C149923435 @default.
- W4220824906 hasConcept C153823671 @default.
- W4220824906 hasConcept C162324750 @default.
- W4220824906 hasConcept C179366874 @default.
- W4220824906 hasConcept C18903297 @default.
- W4220824906 hasConcept C205649164 @default.
- W4220824906 hasConcept C2777489503 @default.
- W4220824906 hasConcept C2778570914 @default.
- W4220824906 hasConcept C2778755073 @default.
- W4220824906 hasConcept C2908647359 @default.
- W4220824906 hasConcept C39432304 @default.
- W4220824906 hasConcept C39853841 @default.
- W4220824906 hasConcept C50522688 @default.
- W4220824906 hasConcept C51193700 @default.
- W4220824906 hasConcept C524765639 @default.
- W4220824906 hasConcept C58640448 @default.
- W4220824906 hasConcept C86803240 @default.
- W4220824906 hasConcept C87717796 @default.
- W4220824906 hasConcept C97053079 @default.
- W4220824906 hasConceptScore W4220824906C107826830 @default.
- W4220824906 hasConceptScore W4220824906C110158866 @default.
- W4220824906 hasConceptScore W4220824906C134560507 @default.
- W4220824906 hasConceptScore W4220824906C139719470 @default.
- W4220824906 hasConceptScore W4220824906C144024400 @default.
- W4220824906 hasConceptScore W4220824906C149207113 @default.
- W4220824906 hasConceptScore W4220824906C149923435 @default.
- W4220824906 hasConceptScore W4220824906C153823671 @default.
- W4220824906 hasConceptScore W4220824906C162324750 @default.
- W4220824906 hasConceptScore W4220824906C179366874 @default.
- W4220824906 hasConceptScore W4220824906C18903297 @default.
- W4220824906 hasConceptScore W4220824906C205649164 @default.
- W4220824906 hasConceptScore W4220824906C2777489503 @default.
- W4220824906 hasConceptScore W4220824906C2778570914 @default.
- W4220824906 hasConceptScore W4220824906C2778755073 @default.
- W4220824906 hasConceptScore W4220824906C2908647359 @default.
- W4220824906 hasConceptScore W4220824906C39432304 @default.
- W4220824906 hasConceptScore W4220824906C39853841 @default.
- W4220824906 hasConceptScore W4220824906C50522688 @default.
- W4220824906 hasConceptScore W4220824906C51193700 @default.
- W4220824906 hasConceptScore W4220824906C524765639 @default.
- W4220824906 hasConceptScore W4220824906C58640448 @default.
- W4220824906 hasConceptScore W4220824906C86803240 @default.
- W4220824906 hasConceptScore W4220824906C87717796 @default.
- W4220824906 hasConceptScore W4220824906C97053079 @default.
- W4220824906 hasLocation W42208249061 @default.
- W4220824906 hasLocation W42208249062 @default.
- W4220824906 hasOpenAccess W4220824906 @default.
- W4220824906 hasPrimaryLocation W42208249061 @default.
- W4220824906 hasRelatedWork W1974945779 @default.
- W4220824906 hasRelatedWork W2076939699 @default.
- W4220824906 hasRelatedWork W2362099470 @default.
- W4220824906 hasRelatedWork W2362635077 @default.
- W4220824906 hasRelatedWork W2379194277 @default.
- W4220824906 hasRelatedWork W2387194620 @default.
- W4220824906 hasRelatedWork W2760613956 @default.
- W4220824906 hasRelatedWork W4310526829 @default.
- W4220824906 hasRelatedWork W2144582481 @default.
- W4220824906 hasRelatedWork W2281516074 @default.
- W4220824906 isParatext "false" @default.
- W4220824906 isRetracted "false" @default.
- W4220824906 workType "article" @default.