Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220829636> ?p ?o ?g. }
- W4220829636 endingPage "87" @default.
- W4220829636 startingPage "87" @default.
- W4220829636 abstract "There is a growing interest in topic modeling to decipher the valuable information embedded in natural texts. However, there are no studies training an unsupervised model to automatically categorize the social networks (SN) messages according to personality traits. Most of the existing literature relied on the Big 5 framework and psychological reports to recognize the personality of users. Furthermore, collecting datasets for other personality themes is an inherent problem that requires unprecedented time and human efforts, and it is bounded with privacy constraints. Alternatively, this study hypothesized that a small set of seed words is enough to decipher the psycholinguistics states encoded in texts, and the auxiliary knowledge could synergize the unsupervised model to categorize the messages according to human traits. Therefore, this study devised a dataless model called Seed-guided Latent Dirichlet Allocation (SLDA) to categorize the SN messages according to the PEN model that comprised Psychoticism, Extraversion, and Neuroticism traits. The intrinsic evaluations were conducted to determine the performance and disclose the nature of texts generated by SLDA, especially in the context of Psychoticism. The extrinsic evaluations were conducted using several machine learning classifiers to posit how well the topic model has identified latent semantic structure that persists over time in the training documents. The findings have shown that SLDA outperformed other models by attaining a coherence score up to 0.78, whereas the machine learning classifiers can achieve precision up to 0.993. We also will be shared the corpus generated by SLDA for further empirical studies." @default.
- W4220829636 created "2022-04-03" @default.
- W4220829636 creator A5006203396 @default.
- W4220829636 creator A5021333066 @default.
- W4220829636 creator A5049463269 @default.
- W4220829636 date "2022-03-08" @default.
- W4220829636 modified "2023-10-14" @default.
- W4220829636 title "A Seed-Guided Latent Dirichlet Allocation Approach to Predict the Personality of Online Users Using the PEN Model" @default.
- W4220829636 cites W1981401636 @default.
- W4220829636 cites W1988790447 @default.
- W4220829636 cites W1999318832 @default.
- W4220829636 cites W2022792389 @default.
- W4220829636 cites W2098162425 @default.
- W4220829636 cites W2102045167 @default.
- W4220829636 cites W2105527159 @default.
- W4220829636 cites W2144369956 @default.
- W4220829636 cites W2153266959 @default.
- W4220829636 cites W2153803020 @default.
- W4220829636 cites W2257992348 @default.
- W4220829636 cites W2346720634 @default.
- W4220829636 cites W2415496662 @default.
- W4220829636 cites W2519130042 @default.
- W4220829636 cites W2527655278 @default.
- W4220829636 cites W2592232731 @default.
- W4220829636 cites W2606797676 @default.
- W4220829636 cites W2610196014 @default.
- W4220829636 cites W2742970053 @default.
- W4220829636 cites W2900547346 @default.
- W4220829636 cites W2904614016 @default.
- W4220829636 cites W2905354238 @default.
- W4220829636 cites W2906983724 @default.
- W4220829636 cites W2908210228 @default.
- W4220829636 cites W2918408501 @default.
- W4220829636 cites W2962762220 @default.
- W4220829636 cites W2963034284 @default.
- W4220829636 cites W2969145558 @default.
- W4220829636 cites W2972110483 @default.
- W4220829636 cites W2972914098 @default.
- W4220829636 cites W2984905878 @default.
- W4220829636 cites W2989747508 @default.
- W4220829636 cites W2990694629 @default.
- W4220829636 cites W3007329240 @default.
- W4220829636 cites W3011686870 @default.
- W4220829636 cites W3015674157 @default.
- W4220829636 cites W3020447069 @default.
- W4220829636 cites W3043222912 @default.
- W4220829636 cites W3044698433 @default.
- W4220829636 cites W3082368902 @default.
- W4220829636 cites W3097109473 @default.
- W4220829636 cites W3117044075 @default.
- W4220829636 cites W3124959131 @default.
- W4220829636 cites W3126400384 @default.
- W4220829636 cites W4206546368 @default.
- W4220829636 cites W4206642058 @default.
- W4220829636 cites W4236137412 @default.
- W4220829636 doi "https://doi.org/10.3390/a15030087" @default.
- W4220829636 hasPublicationYear "2022" @default.
- W4220829636 type Work @default.
- W4220829636 citedByCount "2" @default.
- W4220829636 countsByYear W42208296362023 @default.
- W4220829636 crossrefType "journal-article" @default.
- W4220829636 hasAuthorship W4220829636A5006203396 @default.
- W4220829636 hasAuthorship W4220829636A5021333066 @default.
- W4220829636 hasAuthorship W4220829636A5049463269 @default.
- W4220829636 hasBestOaLocation W42208296361 @default.
- W4220829636 hasConcept C119857082 @default.
- W4220829636 hasConcept C127816348 @default.
- W4220829636 hasConcept C151730666 @default.
- W4220829636 hasConcept C154945302 @default.
- W4220829636 hasConcept C15744967 @default.
- W4220829636 hasConcept C164614171 @default.
- W4220829636 hasConcept C171686336 @default.
- W4220829636 hasConcept C177264268 @default.
- W4220829636 hasConcept C187288502 @default.
- W4220829636 hasConcept C199360897 @default.
- W4220829636 hasConcept C204321447 @default.
- W4220829636 hasConcept C2779343474 @default.
- W4220829636 hasConcept C2779924438 @default.
- W4220829636 hasConcept C2865642 @default.
- W4220829636 hasConcept C41008148 @default.
- W4220829636 hasConcept C500882744 @default.
- W4220829636 hasConcept C54355233 @default.
- W4220829636 hasConcept C77805123 @default.
- W4220829636 hasConcept C86803240 @default.
- W4220829636 hasConcept C94124525 @default.
- W4220829636 hasConcept C94612546 @default.
- W4220829636 hasConceptScore W4220829636C119857082 @default.
- W4220829636 hasConceptScore W4220829636C127816348 @default.
- W4220829636 hasConceptScore W4220829636C151730666 @default.
- W4220829636 hasConceptScore W4220829636C154945302 @default.
- W4220829636 hasConceptScore W4220829636C15744967 @default.
- W4220829636 hasConceptScore W4220829636C164614171 @default.
- W4220829636 hasConceptScore W4220829636C171686336 @default.
- W4220829636 hasConceptScore W4220829636C177264268 @default.
- W4220829636 hasConceptScore W4220829636C187288502 @default.
- W4220829636 hasConceptScore W4220829636C199360897 @default.
- W4220829636 hasConceptScore W4220829636C204321447 @default.
- W4220829636 hasConceptScore W4220829636C2779343474 @default.