Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220830088> ?p ?o ?g. }
- W4220830088 abstract "As one of the most important brain tumors, glioblastoma (GBM) has a poor prognosis, especially in adults. Immune-related genes (IRGs) and immune cell infiltration are responsible for the pathogenesis of GBM. This study aimed to identify new tumor markers to predict the prognosis of patients with GBM.The Cancer Genome Atlas (TCGA) database and ImmPort database were used for model construction. The Wilcoxon rank-sum test was applied to identify the differentially expressed IRGs (DEIRGs) between the GBM and normal samples. Univariate Cox regression analysis and Kaplan-Meier analysis was performed to investigate the relationship between each DEIRG and overall survival. Next, multivariate Cox regression analysis was exploited to further explore the prognostic potential of DEIRGs. A risk-score model was constructed based on the above results. The area under the curve (AUC) values were calculated to assess the effect of the model prediction. Furthermore, the Chinese Glioma Genome Atlas (CGGA) dataset was used for model validation. STRING database and functional enrichment analysis were used for exploring the gene interactions and the underlying functions and pathways. The CIBERSORT algorithm was used for correlation analysis of the marker genes and the tumor-infiltrating immune cells.There were 198 DEIRGs in GBM, including 153 upregulated genes and 45 downregulated genes. Seven marker genes (LYNX1, PRELID1P4, MMP9, TCF12, RGS14, RUNX1, and CCR2) were filtered out by sequential screening for DEIRGs. The regression coefficients (0.0410, 1.335, 0.005, -0.021, 0.123, 0.142, and -0.329) and expression data of the marker genes were used to construct the model. The AUC values for 1, 2, and 3 years were 0.744, 0.737, and 0.749 in the TCGA-GBM cohort and 0.612, 0.602, and 0.594 in the CGGA-GBM cohort, respectively, which indicated a high predictive power. The results of enrichment analysis revealed that these genes were enriched in the activation of T cell and cytokine receptor interaction pathways. The interaction network map demonstrated a close relationship between the marker genes MMP9 and CCR2. Infiltration analysis of the immune cells showed that dendritic cells (DCs) could identify GBM, while LYNX1, RUNX1, and CCR2 were significantly positively correlated with DCs expression.This study analyzed the expression of IRGs in GBM and identified seven marker genes for the construction of an immune-related risk score model. These marker genes were found to be associated with DCs and were enriched in similar immune response pathways. These findings are likely to provide new insights for the immunotherapy of patients with GBM." @default.
- W4220830088 created "2022-04-03" @default.
- W4220830088 creator A5001369896 @default.
- W4220830088 creator A5015907577 @default.
- W4220830088 creator A5048340145 @default.
- W4220830088 date "2022-03-16" @default.
- W4220830088 modified "2023-09-30" @default.
- W4220830088 title "Construction and Validation of an Immune-Related Risk Score Model for Survival Prediction in Glioblastoma" @default.
- W4220830088 cites W1525911437 @default.
- W4220830088 cites W1786797005 @default.
- W4220830088 cites W1812256879 @default.
- W4220830088 cites W1961885071 @default.
- W4220830088 cites W1985987855 @default.
- W4220830088 cites W2016790761 @default.
- W4220830088 cites W2032892678 @default.
- W4220830088 cites W2073586533 @default.
- W4220830088 cites W2097486055 @default.
- W4220830088 cites W2106391842 @default.
- W4220830088 cites W2112387900 @default.
- W4220830088 cites W2114755206 @default.
- W4220830088 cites W2126817554 @default.
- W4220830088 cites W2137146859 @default.
- W4220830088 cites W2148977460 @default.
- W4220830088 cites W2163570329 @default.
- W4220830088 cites W2169309544 @default.
- W4220830088 cites W2176493842 @default.
- W4220830088 cites W2206466303 @default.
- W4220830088 cites W2265419075 @default.
- W4220830088 cites W2276790712 @default.
- W4220830088 cites W2277442753 @default.
- W4220830088 cites W2471873673 @default.
- W4220830088 cites W2507880739 @default.
- W4220830088 cites W2559981308 @default.
- W4220830088 cites W2566753678 @default.
- W4220830088 cites W2591531756 @default.
- W4220830088 cites W2765224588 @default.
- W4220830088 cites W2783146090 @default.
- W4220830088 cites W2792656817 @default.
- W4220830088 cites W2796448036 @default.
- W4220830088 cites W2796584001 @default.
- W4220830088 cites W2797891654 @default.
- W4220830088 cites W2803329568 @default.
- W4220830088 cites W2883755130 @default.
- W4220830088 cites W2884109092 @default.
- W4220830088 cites W2887970262 @default.
- W4220830088 cites W2891487738 @default.
- W4220830088 cites W2896058280 @default.
- W4220830088 cites W2901528543 @default.
- W4220830088 cites W2937453479 @default.
- W4220830088 cites W2940544511 @default.
- W4220830088 cites W2942720047 @default.
- W4220830088 cites W2950443181 @default.
- W4220830088 cites W2963588632 @default.
- W4220830088 cites W2966710588 @default.
- W4220830088 cites W2972188295 @default.
- W4220830088 cites W2974546158 @default.
- W4220830088 cites W2976286379 @default.
- W4220830088 cites W2982160786 @default.
- W4220830088 cites W2990301812 @default.
- W4220830088 cites W2997058272 @default.
- W4220830088 cites W3008157853 @default.
- W4220830088 cites W3026484222 @default.
- W4220830088 cites W3027286012 @default.
- W4220830088 cites W3035529059 @default.
- W4220830088 cites W3092656857 @default.
- W4220830088 cites W3098057694 @default.
- W4220830088 cites W3107527779 @default.
- W4220830088 cites W3114152106 @default.
- W4220830088 cites W3135035839 @default.
- W4220830088 cites W3165127657 @default.
- W4220830088 cites W3187089662 @default.
- W4220830088 cites W4200041719 @default.
- W4220830088 cites W4210564571 @default.
- W4220830088 cites W4211220688 @default.
- W4220830088 cites W4213336975 @default.
- W4220830088 cites W4229936717 @default.
- W4220830088 doi "https://doi.org/10.3389/fneur.2022.832944" @default.
- W4220830088 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35370869" @default.
- W4220830088 hasPublicationYear "2022" @default.
- W4220830088 type Work @default.
- W4220830088 citedByCount "2" @default.
- W4220830088 countsByYear W42208300882022 @default.
- W4220830088 countsByYear W42208300882023 @default.
- W4220830088 crossrefType "journal-article" @default.
- W4220830088 hasAuthorship W4220830088A5001369896 @default.
- W4220830088 hasAuthorship W4220830088A5015907577 @default.
- W4220830088 hasAuthorship W4220830088A5048340145 @default.
- W4220830088 hasBestOaLocation W42208300881 @default.
- W4220830088 hasConcept C104317684 @default.
- W4220830088 hasConcept C10515644 @default.
- W4220830088 hasConcept C126322002 @default.
- W4220830088 hasConcept C143998085 @default.
- W4220830088 hasConcept C150194340 @default.
- W4220830088 hasConcept C152724338 @default.
- W4220830088 hasConcept C162317418 @default.
- W4220830088 hasConcept C203014093 @default.
- W4220830088 hasConcept C2778227246 @default.
- W4220830088 hasConcept C502942594 @default.
- W4220830088 hasConcept C50382708 @default.
- W4220830088 hasConcept C54355233 @default.