Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220833487> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4220833487 abstract "<p>In ensemble variational (EnVar) data assimilation systems, background error covariances are sampled from an ensemble of forecasts evolving with time. One possible way of generating this ensemble is by running an Ensemble of Data Assimilations (EDA) that samples all possible error sources (initial condition errors, boundary condition errors, model errors). Large ensemble sizes are desirable to minimize sampling errors, but generating a single ensemble member is usually expensive due to the cost of integrating the physical model. In practice, ensembles with coarser spatial resolutions are sometimes used, allowing for cheaper generation of individual members, and thus larger ensemble sizes.</p><p>Multilevel Monte Carlo (MLMC) methods propose to go beyond this usual trade-off between grid resolution and ensemble size, by expressing a fine-grid estimator as an astute combination of estimators computed on a hierarchy of spatial grids. Starting from a Monte Carlo covariance estimator on a coarse grid but with a large ensemble size, correction terms are added to form a quasi-telescopic sum. The correction terms come from EDAs of increasing spatial resolutions and decreasing ensemble sizes, with a pairwise stochastic coupling between EDAs of two successive resolutions. The expectation of this MLMC estimator is equal to the expectation of the Monte Carlo estimator on the finest grid, so that no bias is introduced by the coarse resolution forecasts. Without increasing the computational cost, MLMC effectively reduces the variance of the covariance estimator, <em>i.e.</em> reduces the sampling noise on covariances.</p><p>We first present the theoretical basis of MLMC and how it can apply to the estimation of covariance matrices. An illustration with a quasi-geostrophic model is then presented. For a given computational budget, we compare three equal-cost methods to estimate background error covariances: (1) the usual single-resolution ensemble estimate, (2) a combination of estimates of various resolutions based on Bayesian Model Averaging and (3) the MLMC estimate. The methods are compared in terms of mean square error of the covariance estimators, and in terms of quality of the resulting analyses for one assimilation cycle. The role of covariance localization in each case is also briefly discussed.</p><p><em>This w</em><em>ork is partially supported by 3IA Artificial and Natural Intelligence Toulouse Institute, French "Investing for the Future- PIA3" program under the Grant agreement ANR-19-PI3A-0004.</em></p><p><em>This project has received financial support from the CNRS through the 80Prime program.<br></em></p>" @default.
- W4220833487 created "2022-04-03" @default.
- W4220833487 creator A5018784017 @default.
- W4220833487 creator A5036298459 @default.
- W4220833487 creator A5052858249 @default.
- W4220833487 creator A5061853206 @default.
- W4220833487 creator A5071969374 @default.
- W4220833487 creator A5074413613 @default.
- W4220833487 creator A5081408798 @default.
- W4220833487 date "2022-03-26" @default.
- W4220833487 modified "2023-10-18" @default.
- W4220833487 title "Multilevel Monte Carlo estimation of background error covariances in ensemble variational data assimilation" @default.
- W4220833487 doi "https://doi.org/10.5194/egusphere-egu22-336" @default.
- W4220833487 hasPublicationYear "2022" @default.
- W4220833487 type Work @default.
- W4220833487 citedByCount "0" @default.
- W4220833487 crossrefType "posted-content" @default.
- W4220833487 hasAuthorship W4220833487A5018784017 @default.
- W4220833487 hasAuthorship W4220833487A5036298459 @default.
- W4220833487 hasAuthorship W4220833487A5052858249 @default.
- W4220833487 hasAuthorship W4220833487A5061853206 @default.
- W4220833487 hasAuthorship W4220833487A5071969374 @default.
- W4220833487 hasAuthorship W4220833487A5074413613 @default.
- W4220833487 hasAuthorship W4220833487A5081408798 @default.
- W4220833487 hasConcept C105795698 @default.
- W4220833487 hasConcept C111350023 @default.
- W4220833487 hasConcept C11413529 @default.
- W4220833487 hasConcept C119898033 @default.
- W4220833487 hasConcept C121332964 @default.
- W4220833487 hasConcept C126255220 @default.
- W4220833487 hasConcept C153294291 @default.
- W4220833487 hasConcept C154945302 @default.
- W4220833487 hasConcept C178650346 @default.
- W4220833487 hasConcept C185429906 @default.
- W4220833487 hasConcept C187691185 @default.
- W4220833487 hasConcept C19499675 @default.
- W4220833487 hasConcept C24552861 @default.
- W4220833487 hasConcept C2524010 @default.
- W4220833487 hasConcept C33923547 @default.
- W4220833487 hasConcept C41008148 @default.
- W4220833487 hasConceptScore W4220833487C105795698 @default.
- W4220833487 hasConceptScore W4220833487C111350023 @default.
- W4220833487 hasConceptScore W4220833487C11413529 @default.
- W4220833487 hasConceptScore W4220833487C119898033 @default.
- W4220833487 hasConceptScore W4220833487C121332964 @default.
- W4220833487 hasConceptScore W4220833487C126255220 @default.
- W4220833487 hasConceptScore W4220833487C153294291 @default.
- W4220833487 hasConceptScore W4220833487C154945302 @default.
- W4220833487 hasConceptScore W4220833487C178650346 @default.
- W4220833487 hasConceptScore W4220833487C185429906 @default.
- W4220833487 hasConceptScore W4220833487C187691185 @default.
- W4220833487 hasConceptScore W4220833487C19499675 @default.
- W4220833487 hasConceptScore W4220833487C24552861 @default.
- W4220833487 hasConceptScore W4220833487C2524010 @default.
- W4220833487 hasConceptScore W4220833487C33923547 @default.
- W4220833487 hasConceptScore W4220833487C41008148 @default.
- W4220833487 hasLocation W42208334871 @default.
- W4220833487 hasOpenAccess W4220833487 @default.
- W4220833487 hasPrimaryLocation W42208334871 @default.
- W4220833487 hasRelatedWork W1821645233 @default.
- W4220833487 hasRelatedWork W1965898538 @default.
- W4220833487 hasRelatedWork W1970821617 @default.
- W4220833487 hasRelatedWork W2013066175 @default.
- W4220833487 hasRelatedWork W2021298725 @default.
- W4220833487 hasRelatedWork W2022232878 @default.
- W4220833487 hasRelatedWork W2392808430 @default.
- W4220833487 hasRelatedWork W2793618134 @default.
- W4220833487 hasRelatedWork W3015434310 @default.
- W4220833487 hasRelatedWork W4246387931 @default.
- W4220833487 isParatext "false" @default.
- W4220833487 isRetracted "false" @default.
- W4220833487 workType "article" @default.